login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046787 Number of partitions of 5n with equal nonzero number of parts congruent to each of 1, 2, 3 and 4 modulo 5. 11
0, 0, 1, 5, 17, 46, 113, 254, 546, 1122, 2242, 4354, 8286, 15441, 28303, 51025, 90699, 159003, 275355, 471216, 797761, 1336686, 2218393, 3648177, 5948503, 9620406, 15439833, 24597942, 38916192, 61159549, 95508014, 148241050, 228753319, 351022425, 535760584 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000 (terms n=0..100 from Alois P. Heinz)

Index and properties of sequences related to partitions of 5n

FORMULA

a(n) = A046776(n) + A202086(n) + A202088(n) - A000041(n) = A202192(n) - A000041(n). - Max Alekseyev

G.f.: (Sum_{k>0} x^(2*k)/(Product_{j=1..k} 1 - x^j)^4)/(Product_{j>0} 1 - x^j). - Andrew Howroyd, Sep 16 2019

MAPLE

mkl:= proc(i, l) local ll, mn, x; ll:= `if`(irem(i, 5)=0, l, applyop(x->x+1, irem(i, 5), l)); mn:= min(l[])-1; `if`(mn<=0, ll, map(x->x-mn, ll)) end:

g:= proc(n, i, t) local m, mx; if n<0 then 0 elif n=0 then `if`(t[1]>0 and t[1]=t[2] and t[2]=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i<5 then mx:= max(t[]); m:= n-10*mx +t[1] +t[2]*2 +t[3]*3 +t[4]*4; `if`(m>=0 and irem(m, 10)=0, 1, 0) else g(n, i, t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:

a:= n-> g(5*n, 5*n, [0, 0, 0, 0]):

seq(a(n), n=0..20);  # Alois P. Heinz, Jul 04 2009

MATHEMATICA

mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l]-1; If[mn <= 0, ll, Map[#-mn&, ll]]];

g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n<0, 0, If[n==0, If[ t[[1]]>0 && Equal @@ t[[1;; 4]], 1, 0], If[i==0, 0, If[i<5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10]==0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];

a[n_] := g[5n, 5n, {0, 0, 0, 0}];

Table[a[n], {n, 0, 34}] (* Jean-Fran├žois Alcover, May 25 2019, after Alois P. Heinz *)

PROG

(PARI) seq(n)={Vec(sum(k=1, n\2, x^(2*k)/prod(j=1, k, 1 - x^j + O(x*x^(n-2*k)))^4)/prod(j=1, n, 1 - x^j + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Sep 16 2019

CROSSREFS

Other similar sequences include:

  Mod 4: A046778, A046779, A046780, A046781, A046782.

  Mod 5: A046783, A046784, A046785, A046786.

Cf. A046765, A046776, A202192.

Sequence in context: A147043 A146264 A146216 * A003295 A228857 A253427

Adjacent sequences:  A046784 A046785 A046786 * A046788 A046789 A046790

KEYWORD

nonn

AUTHOR

David W. Wilson

EXTENSIONS

a(17)-a(32) from Alois P. Heinz, Jul 04 2009

a(33)-a(34) from Alois P. Heinz, Aug 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 06:21 EDT 2021. Contains 346348 sequences. (Running on oeis4.)