OFFSET
0,4
COMMENTS
Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000 (terms n=0..100 from Alois P. Heinz)
FORMULA
G.f.: (Sum_{k>0} x^(2*k)/(Product_{j=1..k} 1 - x^j)^4)/(Product_{j>0} 1 - x^j). - Andrew Howroyd, Sep 16 2019
MAPLE
mkl:= proc(i, l) local ll, mn, x; ll:= `if`(irem(i, 5)=0, l, applyop(x->x+1, irem(i, 5), l)); mn:= min(l[])-1; `if`(mn<=0, ll, map(x->x-mn, ll)) end:
g:= proc(n, i, t) local m, mx; if n<0 then 0 elif n=0 then `if`(t[1]>0 and t[1]=t[2] and t[2]=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i<5 then mx:= max(t[]); m:= n-10*mx +t[1] +t[2]*2 +t[3]*3 +t[4]*4; `if`(m>=0 and irem(m, 10)=0, 1, 0) else g(n, i, t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:
a:= n-> g(5*n, 5*n, [0, 0, 0, 0]):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 04 2009
MATHEMATICA
mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l]-1; If[mn <= 0, ll, Map[#-mn&, ll]]];
g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n<0, 0, If[n==0, If[ t[[1]]>0 && Equal @@ t[[1;; 4]], 1, 0], If[i==0, 0, If[i<5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10]==0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];
a[n_] := g[5n, 5n, {0, 0, 0, 0}];
Table[a[n], {n, 0, 34}] (* Jean-François Alcover, May 25 2019, after Alois P. Heinz *)
PROG
(PARI) seq(n)={Vec(sum(k=1, n\2, x^(2*k)/prod(j=1, k, 1 - x^j + O(x*x^(n-2*k)))^4)/prod(j=1, n, 1 - x^j + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(17)-a(32) from Alois P. Heinz, Jul 04 2009
a(33)-a(34) from Alois P. Heinz, Aug 13 2013
STATUS
approved