Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 16 2019 18:14:19
%S 0,0,1,5,17,46,113,254,546,1122,2242,4354,8286,15441,28303,51025,
%T 90699,159003,275355,471216,797761,1336686,2218393,3648177,5948503,
%U 9620406,15439833,24597942,38916192,61159549,95508014,148241050,228753319,351022425,535760584
%N Number of partitions of 5n with equal nonzero number of parts congruent to each of 1, 2, 3 and 4 modulo 5.
%C Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.
%H Andrew Howroyd, <a href="/A046787/b046787.txt">Table of n, a(n) for n = 0..1000</a> (terms n=0..100 from Alois P. Heinz)
%H <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F a(n) = A046776(n) + A202086(n) + A202088(n) - A000041(n) = A202192(n) - A000041(n). - _Max Alekseyev_
%F G.f.: (Sum_{k>0} x^(2*k)/(Product_{j=1..k} 1 - x^j)^4)/(Product_{j>0} 1 - x^j). - _Andrew Howroyd_, Sep 16 2019
%p mkl:= proc(i,l) local ll, mn, x; ll:= `if`(irem(i, 5)=0, l, applyop(x->x+1, irem(i,5), l)); mn:= min(l[])-1; `if`(mn<=0, ll, map(x->x-mn, ll)) end:
%p g:= proc(n,i,t) local m, mx; if n<0 then 0 elif n=0 then `if`(t[1]>0 and t[1]=t[2] and t[2]=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i<5 then mx:= max(t[]); m:= n-10*mx +t[1] +t[2]*2 +t[3]*3 +t[4]*4; `if`(m>=0 and irem(m, 10)=0, 1, 0) else g(n,i,t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:
%p a:= n-> g(5*n, 5*n, [0,0,0,0]):
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 04 2009
%t mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l]-1; If[mn <= 0, ll, Map[#-mn&, ll]]];
%t g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n<0, 0, If[n==0, If[ t[[1]]>0 && Equal @@ t[[1;;4]], 1, 0], If[i==0, 0, If[i<5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10]==0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];
%t a[n_] := g[5n, 5n, {0, 0, 0, 0}];
%t Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, May 25 2019, after _Alois P. Heinz_ *)
%o (PARI) seq(n)={Vec(sum(k=1, n\2, x^(2*k)/prod(j=1, k, 1 - x^j + O(x*x^(n-2*k)))^4)/prod(j=1, n, 1 - x^j + O(x*x^n)), -(n+1))} \\ _Andrew Howroyd_, Sep 16 2019
%Y Other similar sequences include:
%Y Mod 4: A046778, A046779, A046780, A046781, A046782.
%Y Mod 5: A046783, A046784, A046785, A046786.
%Y Cf. A046765, A046776, A202192.
%K nonn
%O 0,4
%A _David W. Wilson_
%E a(17)-a(32) from _Alois P. Heinz_, Jul 04 2009
%E a(33)-a(34) from _Alois P. Heinz_, Aug 13 2013