

A038727


Configurations of linear chains in a 5dimensional hypercubic lattice


1



0, 0, 80, 1280, 14320, 148480, 1459840, 13835680, 127784640, 1158460000, 10342876480
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=1 (and d=5). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=6, we have C_{n,m=1} = A038745(n). These values appear in Table 1, pp. 10881090, of Nemirovsky et al. (1992).)  Petros Hadjicostas, Jan 06 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108.


CROSSREFS

Cf. A033155, A038745, A042949, A047057.
Sequence in context: A168364 A296353 A126861 * A204476 A151603 A199533
Adjacent sequences: A038724 A038725 A038726 * A038728 A038729 A038730


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, May 02 2000


EXTENSIONS

Name was edited by Petros Hadjicostas, Jan 06 2019
Terms a(10) and a(11) were copied from Table I, p. 1090, in Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 06 2019


STATUS

approved



