

A042949


Configurations of linear chains in a 4dimensional hypercubic lattice.


4



0, 0, 48, 576, 4752, 36864, 271680, 1931808, 13384320, 91133664, 610863072
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=1 (and d=4). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n) while for d=3, we have C_{n,m=1}=A047057(n).) These numbers are given in Table I (p. 1088) in the paper by Nemirovsky et al. (1992).  Petros Hadjicostas, Jan 04 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108.


CROSSREFS

Cf. A033155, A047057.
Sequence in context: A266210 A245953 A192832 * A190601 A179404 A171343
Adjacent sequences: A042946 A042947 A042948 * A042950 A042951 A042952


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

Name edited by Petros Hadjicostas, Jan 04 2019


STATUS

approved



