This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042947 Gilda's numbers: numbers n such that if a Fibonacci sequence is formed with first term = a certain absolute value between decimal digits in n (A007953) and second term = sum of decimal digits in n (A040997), then n itself occurs as a term in the sequence. 1
 0, 29, 49, 78, 110, 152, 220, 314, 330, 364, 440, 550, 628, 660, 683, 770, 880, 990, 997, 2207, 5346, 13064, 30254, 35422, 37862, 38006, 65676, 73805, 143662, 202196, 933138, 977909, 3120796, 3242189, 3363582, 3606368, 3727761, 3849154, 3970547, 4484776, 4848955 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Is this sequence infinite? LINKS Russo, F. A Set of New Smarandache Functions, Sequences and Conjectures in Numer Theory., Lupton, AZ: American Research Press, 2000. FORMULA Let [x1.x2.x3. ... .xi] be the decimal expansion of n. Then define F(0) = |x1-x2-...-xi|, F(1) = x1 + x2 + x3 + ... + xi, and for k>1, F(k) = F(k-1) + F(k-2). If F(k)=n for some k, then n belongs to the sequence. PROG (PARI) for(n=0, 10000000, s=eval(Vec(Str(n))); f1=sum(i=1, #s, s[i]); f0=abs(2*s-f1); f=f0+f1; while(f<=n, if(f==n, print1(n", "); break); f0=f1; f1=f; f=f0+f1)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008 CROSSREFS Cf. A007953, A038868, A040997. Sequence in context: A108258 A232236 A228585 * A134555 A164075 A117328 Adjacent sequences:  A042944 A042945 A042946 * A042948 A042949 A042950 KEYWORD base,nonn AUTHOR EXTENSIONS Corrected and extended by Larry Reeves (larryr(AT)acm.org), Sep 28 2000 2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 04:58 EDT 2019. Contains 327119 sequences. (Running on oeis4.)