login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324242
Incomplete Lucas numbers: irregular triangular array L(n,k) = Sum_{j = 0..k} (n/(n-j)) * binomial(n-j, j), read by rows, with n >= 1 and 0 <= k <= floor(n/2).
4
1, 1, 3, 1, 4, 1, 5, 7, 1, 6, 11, 1, 7, 16, 18, 1, 8, 22, 29, 1, 9, 29, 45, 47, 1, 10, 37, 67, 76, 1, 11, 46, 96, 121, 123, 1, 12, 56, 133, 188, 199, 1, 13, 67, 179, 284, 320, 322, 1, 14, 79, 235, 417, 508, 521, 1, 15, 92, 302, 596, 792, 841, 843, 1, 16, 106, 381, 831, 1209, 1349, 1364
OFFSET
1,3
COMMENTS
For additional properties of the incomplete Lucas numbers and special cases not listed here, see Filipponi (1996, pp. 45-53).
LINKS
A. Dil and I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comp. 206 (2008), 942-951; in Eqs. (11), see the incomplete Lucas numbers.
Piero Filipponi, Incomplete Fibonacci and Lucas numbers, P. Rend. Circ. Mat. Palermo (Serie II) 45(1) (1996), 37-56; see Table 2 (p. 46) that contains the incomplete Lucas numbers.
A. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Serie II) 48(3) (1999), 591-596.
FORMULA
L(n,k) = F(n-1, k-1) + F(n+1, k) for n >= 1 and 0 <= k <= floor(n/2), where F(n,k) = Sum_{j = 0..k} binomial(n-1-j, j) are the incomplete Fibonacci numbers (defined for n >= 1 and 0 <= k <= floor((n-1)/2)).
L(n+2, k+1) = L(n+1, k+1) + L(n,k) for n >= 1 and 0 <= k <= floor((n-1)/2).
L(n,k) = F(n+2,k) - F(n-2, k-2) for n >= 3 and 2 <= k <= floor((n+1)/2).
Special cases: L(n,0) = 1 (n >= 1), L(n,1) = n+1 (n >= 2), L(n,2) = (n^2-n+2)/2 = A000124(n-1) (n >= 4), and L(n, floor(n/2)) = A000204(n) (n >= 1).
Sum of row n = (3 + (-1)^n)*A000204(n)/4 + n*A000045(n)/2.
G.f. for column k >= 1: t^(2*k)*((A000204(2*k) + t*A000204(2*k-1))*(1-t)^(k+1) - t^2*(2-t))/((1-t)^(k+1) * (1-t-t^2)).
EXAMPLE
Triangle L(n,k) (with rows n >= 1 and columns k >= 0) begins as follows:
1;
1, 3;
1, 4;
1, 5, 7;
1, 6, 11;
1, 7, 16, 18;
1, 8, 22, 29;
1, 9, 29, 45, 47;
1, 10, 37, 67, 76;
1, 11, 46, 96, 121, 123;
1, 12, 56, 133, 188, 199;
...
Row sums are 1, 4, 5, 13, 18, 42, 60, 131, 191, 398, 589, 1186, 1775, 3482, 5257, 10103, 15360, ...
MATHEMATICA
Flatten[Table[Sum[(n/(n-j))*Binomial[n-j, j], {j, 0, k}], {n, 1, 15}, {k, 0, Floor[n/2]}]] (* Stefano Spezia, Sep 03 2019 *)
CROSSREFS
Cf. A038730, A038792, and A134511 for various versions of the incomplete Fibonacci numbers.
Sequence in context: A327642 A358919 A354617 * A216543 A152040 A013705
KEYWORD
nonn,tabf
AUTHOR
Petros Hadjicostas, Sep 02 2019
STATUS
approved