login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).
6

%I #22 Sep 08 2022 08:44:57

%S 0,1,2,3,4,5,7,8,9,10,11,12,14,15,16,17,18,19,21,22,23,24,25,26,28,29,

%T 30,31,32,33,35,36,37,38,39,40,42,43,44,45,46,47,49,50,51,52,53,54,56,

%U 57,58,59,60,61,63,64,65,66,67,68,70,71,72,73,74,75,77

%N Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).

%H Vincenzo Librandi, <a href="/A047368/b047368.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1).

%F G.f.: x^2*(1+x+x^2+x^3+x^4+2*x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 04 2011

%F From _Wesley Ivan Hurt_, Jun 15 2016: (Start)

%F a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.

%F a(n) = (42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36.

%F a(6k) = 7k-2, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)

%p A047368:=n->(42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36: seq(A047368(n), n=1..100); # _Wesley Ivan Hurt_, Jun 15 2016

%t Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 5}, Mod[#, 7]] &] (* _Wesley Ivan Hurt_, Jun 15 2016 *)

%t LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 7}, 100] (* _Vincenzo Librandi_, Jun 16 2016 *)

%o (PARI) a(n)=(n-1)*7\6 \\ _M. F. Hasler_, Oct 05 2014

%o (Magma) [n : n in [0..100] | n mod 7 in [0..5]]; // _Wesley Ivan Hurt_, Jun 15 2016

%Y Cf. A001068, A004773, A004777, A032766, A047226, A248375.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E Crossrefs and explicit formula in name added by _M. F. Hasler_, Oct 05 2014