The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131572 a(0)=0 and a(1)=1, continued such that absolute values of 2nd differences equal the original sequence. 4
 0, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the main sequence of a family of sequences starting at a(0)=A and a(1)=B, continuing a(3,...)= 2B, 2B, 4B, 4B, 8B, 8B, 16B, 16B, 32B, 32B, .. such that the absolute values of the 2nd differences, abs(a(n+2)-2*a(n+1)+a(n)), equal the original sequence. Alternatively starting at a(0)=a(1)=1 gives A016116. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (0,2). FORMULA a(n) = 2*a(n-2), n>2. O.g.f.: x*(1+2*x)/(1-2*x^2). - R. J. Mathar, Jul 16 2008 a(n) = A016116(n) - A000007(n), that is, a(0)=0, a(n)=A016116(n) for n>=1 - Bruno Berselli, Apr 13 2011 First differences: a(n+1)-a(n)=A131575(n). Second differences: A131575(n+1)-A131575(n)= (-1)^n*a(n). MATHEMATICA LinearRecurrence[{0, 2}, {0, 1, 2}, 50] (* Harvey P. Dale, Jul 10 2018 *) PROG (MAGMA) [2^Floor(n/2)-0^n: n in [0..50]]; // Vincenzo Librandi, Aug 18 2011 CROSSREFS Sequence in context: A076939 A158780 A117575 * A152166 A320770 A016116 Adjacent sequences:  A131569 A131570 A131571 * A131573 A131574 A131575 KEYWORD nonn,easy AUTHOR Paul Curtz, Aug 28 2007 EXTENSIONS Edited by R. J. Mathar, Jul 16 2008 More terms from Vincenzo Librandi, Aug 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 14:29 EDT 2021. Contains 345114 sequences. (Running on oeis4.)