login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131569
a(n) = (1/2)*(F(n+2)-1)*(F(n+2)-2) + F(n), where F() are the Fibonacci numbers.
1
1, 2, 8, 24, 71, 198, 541, 1452, 3862, 10208, 26885, 70644, 185369, 485982, 1273420, 3335640, 8735707, 22875050, 59895221, 156819960, 410579786, 1074943872, 2814291433, 7367994504, 19289795761, 50501560538, 132215157296, 346144350552, 906218605007
OFFSET
1,2
COMMENTS
Consider the infinite array M, containing the positive integers by antidiagonals from lower left to upper right: M(j,k) = (k+j-1)*(k+j)/2-(j-1); j, k >= 1. a(n) is the element in row F(n+1) and column F(n), i.e., a(n) = M(F(n+1),F(n)).
FORMULA
From Colin Barker, Feb 21 2015: (Start)
a(n) = 4*a(n-1)-2*a(n-2)-6*a(n-3)+4*a(n-4)+2*a(n-5)-a(n-6).
G.f.: -x*(x^4-2*x^3-2*x^2+2*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)).
(End)
EXAMPLE
Upper left 6 X 6 submatrix of M is
[ 1 3 6 10 15 21]
[ 2 5 9 14 20 27]
[ 4 8 13 19 26 34]
[ 7 12 18 25 33 42]
[11 17 24 32 41 51]
[16 23 31 40 50 61]
F(0) through F(7) are 0, 1, 1, 2, 3, 5, 8, 13. a(4) = M(F(5),F(4)) = M(5,3) = 24.
MATHEMATICA
LinearRecurrence[{4, -2, -6, 4, 2, -1}, {1, 2, 8, 24, 71, 198}, 30] (* Harvey P. Dale, Aug 08 2021 *)
PROG
(PARI) for(n=1, 27, print1((1/2)*(fibonacci(n+2)-1)*(fibonacci(n+2)-2)+fibonacci(n), ", ")) /* Klaus Brockhaus, Aug 29 2007 */
(Magma) z:=15; m:=Fibonacci(z+1); M:=Matrix(IntegerRing(), m, m, [ [ (k+j-1)*(k+j)/2-(j-1): k in [1..m] ]: j in [1..m] ] ); [ M[Fibonacci(n+1), Fibonacci(n)]: n in [1..z] ]; /* Klaus Brockhaus, Aug 29 2007 */
CROSSREFS
Cf. A000045 (Fibonacci numbers).
Sequence in context: A018045 A050242 A045697 * A363602 A290904 A231200
KEYWORD
easy,nonn
AUTHOR
Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Aug 27 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Aug 29 2007
STATUS
approved