login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338739
Number of true-palindromic compositions of n.
1
1, 2, 2, 4, 4, 8, 8, 16, 16, 31, 32, 62, 63, 124, 126, 248, 252, 496, 504, 991, 1007, 1982, 2013, 3960, 4023, 7914, 8040, 15816, 16068, 31609, 32112, 63171, 64180, 126251, 128266, 252318, 256347, 504268, 512324, 1007801, 1023909, 2014131, 2046338, 4025329, 4089724
OFFSET
1,2
COMMENTS
A true-palindromic composition or true-palindrome to be a composition whose digit-comma-sequence is the same whether read from left to right or right to left. [Shapcott p. 35]
LINKS
Caroline Shapcott, An introduction to true-palindromic compositions, Australasian Journal of Combinatorics, Volume 60(1) (2014), Pages 35-49.
FORMULA
Shapcott gives a g.f on p. 3, and 1 should be subtracted to get sequence for n>=1.
EXAMPLE
(12, 6, 21) is a true-palindromic composition of 39.
(126, 621) is a true-palindromic composition of 747.
PROG
(PARI) rev(n) = Vecrev(n=digits(n)); \\ A004086
ispal(n) = Vecrev(n=digits(n))==n; \\ A002113
radd(n) = fromdigits(Vecrev(digits(n))) + n; \\ A056964
lista(nn) = my(x='x+O('x^(nn))); Vec(sum(k=0, nn, if (ispal(k), x^k))/(1 - sum(k=1, nn, if (k%10, x^radd(k)))) - 1);
CROSSREFS
Cf. A016116 (symmetric compositions), A338740.
Sequence in context: A378360 A263614 A082267 * A076939 A117575 A131572
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Nov 06 2020
STATUS
approved