|
|
A231208
|
|
Number of binary "privileged words" of length n.
|
|
3
|
|
|
1, 2, 2, 4, 4, 8, 8, 16, 20, 40, 60, 108, 176, 328, 568, 1040, 1848, 3388, 6132, 11332, 20788, 38576, 71444, 133256, 248676, 466264, 875408, 1649236, 3112220, 5888548, 11160548, 21198388, 40329428, 76865388, 146720792, 280498456, 536986772, 1029413396, 1975848400, 3797016444, 7304942256, 14068883556, 27123215268, 52341185672, 101098109768, 195444063640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A word w is "privileged" if it is of length <= 1, or if it has a privileged prefix that appears exactly twice in w, once as a prefix and once as a suffix (which may overlap).
All terms beyond a(0) are even because the 1's complement of a privileged word is again privileged (and different). - M. F. Hasler, Nov 05 2013
|
|
LINKS
|
Table of n, a(n) for n=0..45.
Gabriele Fici, Open and Closed Words, in Giovanni Pighizzini, ed., The Formal Language Theory Column, Bulletin of EATCS, 2017.
M. Forsyth, A. Jayakumar, J. Shallit, Remarks on Privileged Words, arXiv preprint arXiv:1311.7403 [cs.FL], 2013.
J. Peltomäki, Introducing privileged words: privileged complexity of Sturmian words, Theoret. Comput. Sci. 500 (2013), 57-67.
J. Peltomäki, Privileged factors in the Thue-Morse word — a comparison of privileged words and palindromes, arXiv:1306.6768 [math.CO], 2013-2015.
J. Peltomäki, Privileged Words and Sturmian Words, Ph.D. Dissertation, TUCS Dissertations 214, 2016.
|
|
EXAMPLE
|
For n = 5 the privileged words are {00000,00100,01010,01110,10001,10101,11011,11111}
See A235609 for the full list of privileged words.
The least non-palindromic privileged word is 00101100, of length 8. - M. F. Hasler, Nov 05 2013
|
|
PROG
|
(PARI) A231208=n->{local(isp(w, n, p)=setsearch([0, 2^(n-1)-2, 2^(n-1)+1, 2^n-1], w)&&return(1); for(i=1, n-2, (w-p=w>>i)%2^(n-i)&&next; for(j=1, i-1, (w>>j-p)%2^(n-i)||next(2)); isp(p, n-i)&&return(1))); sum(i=1, 2^(n-1)-1, isp(i, n), 1)*2-!n} \\ M. F. Hasler, Nov 05 2013
|
|
CROSSREFS
|
Cf. A235609, A297184, A297185.
Sequence in context: A016116 A060546 A163403 * A306663 A222955 A217208
Adjacent sequences: A231205 A231206 A231207 * A231209 A231210 A231211
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jeffrey Shallit, Nov 05 2013
|
|
EXTENSIONS
|
Terms a(22) to a(30) computed by Michael Forsyth
More terms from Forsyth et al. (2013) added by N. J. A. Sloane, Jan 23 2014
Terms a(39)-a(45) from Peltomäki's dissertation (2016) added by Jarkko Peltomäki, Aug 24 2016
|
|
STATUS
|
approved
|
|
|
|