login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056924 Number of divisors of n that are smaller than sqrt(n). 72
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 4, 1, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Number of powers of n in product of factors of n if n>1.

Also, the number of solutions to the Pell equation x^2 - y^2 = 4n. - Ralf Stephan, Sep 20 2013

If n is a prime or the square of a prime, then a(n)=1.

Number of positive integer solutions to the equation x^2 + k*x - n = 0, for all k in 1 <= k <= n. - Wesley Ivan Hurt, Dec 27 2020

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

Cristina Ballantine and Mircea Merca, New convolutions for the number of divisors, Journal of Number Theory, 2016, vol. 170, pp. 17-34.

S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT] (2014), (2.29).

FORMULA

For n>1, a(n) = floor[log(A007955(n))/log(n)] = log(A056925(n))/log(n) = floor[d(n)/2] = floor[A000005(n)/2] = ( A000005(n)-A010052(n) )/2.

a(n) = A000005(n) - A038548(n). - Labos Elemer, Apr 19 2002

G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k). - Michael Somos, Mar 18 2006

a(n) = (1/2) * Sum_{d|n} (1 - [d = n/d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021

EXAMPLE

a(16)=2 since the divisors of 16 are 1,2,4,8,16 of which 2 are less than sqrt(16) = 4.

From Labos Elemer, Apr 19 2002: (Start)

n=96: a(96) = Card[{1,2,3,4,6,8}] = 6 = Card[{12,16,24,32,48,96}];

n=225: a(225) = Card[{1,3,5,9}] = Card[{15,25,45,7,225}]-1. (End)

MAPLE

with(numtheory); A056924 := n->floor(tau(n)/2); seq(A056924(k), k=1..100); # Wesley Ivan Hurt, Jun 14 2013

MATHEMATICA

di[x_] := Divisors[x] lds[x_] := Ceiling[DivisorSigma[0, x]/2] rd[x_] := Reverse[Divisors[x]] td[x_] := Table[Part[rd[x], w], {w, 1, lds[x]}] sud[x_] := Apply[Plus, td[x]] Table[DivisorSigma[0, w]-lds[w], {w, 1, 128}] (* Labos Elemer, Apr 19 2002 *)

Table[Length[Select[Divisors[n], # < Sqrt[n] &]], {n, 100}] (* T. D. Noe, Jul 11 2013 *)

PROG

(PARI) a(n)=if(n<1, 0, numdiv(n)\2) /* Michael Somos, Mar 18 2006 */

(Haskell)

a056924 = (`div` 2) . a000005  -- Reinhard Zumkeller, Jul 12 2013

CROSSREFS

Cf. A038548, A000203, A000005, A070038, A070039.

Cf. A227068 (records).

Sequence in context: A341596 A099042 A140774 * A342083 A316364 A318357

Adjacent sequences:  A056921 A056922 A056923 * A056925 A056926 A056927

KEYWORD

nonn

AUTHOR

Henry Bottomley, Jul 12 2000

EXTENSIONS

Edited by Michael Somos, Mar 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 03:49 EDT 2021. Contains 343784 sequences. (Running on oeis4.)