OFFSET
1,6
COMMENTS
Number of powers of n in product of factors of n if n>1.
Also, the number of solutions to the Pell equation x^2 - y^2 = 4n. - Ralf Stephan, Sep 20 2013
If n is a prime or the square of a prime, then a(n)=1.
Number of positive integer solutions to the equation x^2 + k*x - n = 0, for all k in 1 <= k <= n. - Wesley Ivan Hurt, Dec 27 2020
Number of pairs of distinct divisors (d,n/d) of n, with d<n/d. - Wesley Ivan Hurt, Nov 09 2023
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
Cristina Ballantine and Mircea Merca, New convolutions for the number of divisors, Journal of Number Theory, Vol. 170 (2016), pp. 17-34.
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT], 2014, eq. (2.29).
FORMULA
For n>1, a(n) = floor[log(A007955(n))/log(n)] = log(A056925(n))/log(n) = floor[d(n)/2] = floor[A000005(n)/2] = ( A000005(n)-A010052(n) )/2.
G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k). - Michael Somos, Mar 18 2006
a(n) = (1/2) * Sum_{d|n} (1 - [d = n/d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
EXAMPLE
a(16)=2 since the divisors of 16 are 1,2,4,8,16 of which 2 are less than sqrt(16) = 4.
From Labos Elemer, Apr 19 2002: (Start)
n=96: a(96) = Card[{1,2,3,4,6,8}] = 6 = Card[{12,16,24,32,48,96}];
n=225: a(225) = Card[{1,3,5,9}] = Card[{15,25,45,7,225}]-1. (End)
MAPLE
with(numtheory); A056924 := n->floor(tau(n)/2); seq(A056924(k), k=1..100); # Wesley Ivan Hurt, Jun 14 2013
MATHEMATICA
di[x_] := Divisors[x] lds[x_] := Ceiling[DivisorSigma[0, x]/2] rd[x_] := Reverse[Divisors[x]] td[x_] := Table[Part[rd[x], w], {w, 1, lds[x]}] sud[x_] := Apply[Plus, td[x]] Table[DivisorSigma[0, w]-lds[w], {w, 1, 128}] (* Labos Elemer, Apr 19 2002 *)
Table[Length[Select[Divisors[n], # < Sqrt[n] &]], {n, 100}] (* T. D. Noe, Jul 11 2013 *)
a[n_] := Floor[DivisorSigma[0, n]/2]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
PROG
(PARI) a(n)=if(n<1, 0, numdiv(n)\2) /* Michael Somos, Mar 18 2006 */
(Haskell)
a056924 = (`div` 2) . a000005 -- Reinhard Zumkeller, Jul 12 2013
(Python)
from sympy import divisor_count
def A056924(n): return divisor_count(n)//2 # Chai Wah Wu, Jun 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 12 2000
EXTENSIONS
Edited by Michael Somos, Mar 18 2006
STATUS
approved