OFFSET
1,2
COMMENTS
Product of the distinct parts in the divisor pairs (d,n/d) of n, where d < n/d. For example, the divisors of n = 4 are {1,2,4} with divisor pairs (1,4) and (2,2), but only the pair (1,4) has distinct parts, so a(4) = 1*4 = 4. - Wesley Ivan Hurt, Nov 10 2023
FORMULA
EXAMPLE
a(16)=256 since the factors of 16 are 1,2,4,8,16, their product is 1024 and the largest power of 16 which divides 1024 is 256.
MATHEMATICA
lip[n_]:=Module[{pr=Times@@Divisors[n], pwr}, pwr= Floor[ Log[n, pr]]; n^Last[Select[Range[pwr], Divisible[pr, n^#]&]]]; Join[{1}, lip/@ Range[2, 50]] (* Harvey P. Dale, Apr 02 2011 *)
a[n_] := n^Floor[DivisorSigma[0, n]/2]; Array[a, 50] (* Amiram Eldar, Jun 26 2022 *)
PROG
(Python)
from sympy import divisor_count
def A056925(n): return n**(divisor_count(n)//2) # Chai Wah Wu, Jun 25 2022
(PARI) a(n) = n^(numdiv(n)\2); \\ Michel Marcus, Nov 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 12 2000
STATUS
approved