login
A056923
Write the integers in groups: 0; 1,2; 3,4,5; 6,7,8,9; ... and form the product of the members of each group.
2
0, 2, 60, 3024, 240240, 27907200, 4475671200, 948964262400, 257256702743040, 86839771951296000, 35728290125079552000, 17602963463032472448000, 10233395250958706770944000, 6932022668773077815267328000
OFFSET
0,2
COMMENTS
Each group begins with a triangular number and proceeds until one short of the next triangular number.
Also, the number under the radical using Brahmagupta's formula for an n-sided cyclic quadrilateral with sides 1..n. - Ben Paul Thurston, Dec 05 2006
FORMULA
a(n) = (n (n + 3)/2)!/((n - 1)(n + 2)/2)!.
a(n) = Product_{j=1..n+1} ((n+2)*(n+1)/2-j). - Ben Paul Thurston, Dec 05 2006
MAPLE
a:= n-> mul(n*(n+1)/2+j, j=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Feb 02 2019
MATHEMATICA
Table[(n (n + 3)/2)!/((n - 1)(n + 2)/2)!, {n, 0, 15}]
Times@@Range[First[#], Last[#]-1]&/@Partition[Accumulate[Range[0, 15]], 2, 1] (* Harvey P. Dale, Apr 25 2014 *)
CROSSREFS
Sequence in context: A222652 A227624 A199643 * A173221 A375840 A082787
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 09 2000
STATUS
approved