OFFSET
0,2
COMMENTS
Each group begins with a triangular number and proceeds until one short of the next triangular number.
Also, the number under the radical using Brahmagupta's formula for an n-sided cyclic quadrilateral with sides 1..n. - Ben Paul Thurston, Dec 05 2006
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
Nick Hobson, Solution to puzzle 10: Farmer's enclosure
FORMULA
a(n) = (n (n + 3)/2)!/((n - 1)(n + 2)/2)!.
a(n) = Product_{j=1..n+1} ((n+2)*(n+1)/2-j). - Ben Paul Thurston, Dec 05 2006
MAPLE
a:= n-> mul(n*(n+1)/2+j, j=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Feb 02 2019
MATHEMATICA
Table[(n (n + 3)/2)!/((n - 1)(n + 2)/2)!, {n, 0, 15}]
Times@@Range[First[#], Last[#]-1]&/@Partition[Accumulate[Range[0, 15]], 2, 1] (* Harvey P. Dale, Apr 25 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 09 2000
STATUS
approved