login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316364
Number of factorizations of n into factors > 1 such that every distinct submultiset of the factors has a different average.
2
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 8, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5, 4
OFFSET
1,6
COMMENTS
Note that such a factorization is necessarily strict.
LINKS
EXAMPLE
The a(80) = 6 factorizations are (80), (10*8), (16*5), (20*4), (40*2), (10*4*2).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], UnsameQ@@Mean/@Union[Subsets[#]]&]], {n, 50}]
PROG
(PARI)
choosebybits(v, m) = { my(s=vector(hammingweight(m)), i=j=1); while(m>0, if(m%2, s[j] = v[i]; j++); i++; m >>= 1); s; };
hasdupavgs(v) = { my(avgs=Map(), k); for(i=1, (2^(#v))-1, k = (vecsum(choosebybits(v, i))/hammingweight(i)); if(mapisdefined(avgs, k), return(i), mapput(avgs, k, i))); (0); };
A316364(n, m=n, facs=List([])) = if(1==n, (0==hasdupavgs(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs, d); s += A316364(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Sep 21 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 30 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 21 2018
STATUS
approved