login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316365
Number of factorizations of n into factors > 1 such that every distinct subset of the factors has a different sum.
2
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 6, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 7, 2, 2, 1, 10, 1, 2, 4, 9, 2, 5, 1, 4, 2, 4, 1, 14, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 9, 2, 2, 2, 7, 1, 10, 2, 4, 2, 2, 2, 15, 1, 4, 4, 9, 1, 5, 1, 7, 5
OFFSET
1,4
COMMENTS
Also the number of factorizations of n into factors > 1 which form a knapsack partition.
EXAMPLE
The a(24) = 7 factorizations are (2*2*2*3), (2*2*6), (2*3*4), (2*12), (3*8), (4*6), (24).
The a(54) = 6 factorizations are (2*3*3*3), (2*3*9), (2*27), (3*18), (6*9), (54).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], UnsameQ@@Total/@Union[Subsets[#]]&]], {n, 100}]
PROG
(PARI)
primeprodbybits(v, b) = { my(m=1, i=1); while(b>0, if(b%2, m *= prime(v[i])); i++; b >>= 1); (m); };
sumbybits(v, b) = { my(s=0, i=1); while(b>0, s += (b%2)*v[i]; i++; b >>= 1); (s); };
all_distinct_subsets_have_different_sums(v) = { my(m=Map(), s, pp); for(i=0, (2^#v)-1, pp = primeprodbybits(v, i); s = sumbybits(v, i); if(mapisdefined(m, s), if(mapget(m, s)!=pp, return(0)), mapput(m, s, pp))); (1); };
A316365(n, m=n, facs=List([])) = if(1==n, all_distinct_subsets_have_different_sums(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs, d); s += A316365(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Oct 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 30 2018
EXTENSIONS
More terms from Antti Karttunen, Oct 08 2018
STATUS
approved