login
A316367
G.f. satisfies: A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)^2).
2
1, 2, 8, 45, 297, 2144, 16398, 130622, 1072509, 9015741, 77229624, 671868010, 5921241337, 52764270015, 474699837123, 4306641596007, 39363068782364, 362191362113221, 3352866324085927, 31210685632641522, 292025240058727496, 2745513045893833352, 25929804402647536603, 245958435266263341412, 2342884864036837008480, 22409497495190975013498
OFFSET
0,2
LINKS
Sierra Brown, Spencer Daugherty, Eugene Fiorini, Barbara Maldonado, Diego Manzano-Ruiz, Sean Rainville, Riley Waechter, and Tony W. H. Wong, Nimber Sequences of Node-Kayles Games, J. Int. Seq., Vol. 23 (2020), Article 20.3.5.
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)^2).
(2) A(x) = Sum_{n>=0} n! * x^n/(1-x)^(n+1) * A(x)^(2*n) / Product_{k=1..n} (1 + k*x*A(x)^2).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 45*x^3 + 297*x^4 + 2144*x^5 + 16398*x^6 + 130622*x^7 + 1072509*x^8 + 9015741*x^9 + 77229624*x^10 + ...
where we have the following series identity:
A(x) = 1/(1-x*A(x)^2) + x/(1-2*x*A(x)^2) + x^2/(1-3*x*A(x)^2) + x^3/(1-4*x*A(x)^2) + x^4/(1-5*x*A(x)^2) + x^5/(1-6*x*A(x)^2) + x^6/(1-7*x*A(x)^2) + ...
is equal to
A(x) = 1/(1-x) + x/(1-x)^2*A(x)^2/(1+x*A(x)^2) + 2!*x^2/(1-x)^3*A(x)^4/((1+x*A(x)^2)*(1+2*x*A(x)^2)) + 3!*x^3/(1-x)^4*A(x)^6/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)) + 4!*x^4/(1-x)^5*A(x)^8/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)*(1+4*x*A(x)^2)) + 5!*x^5/(1-x)^6*A(x)^10/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)*(1+4*x*A(x)^2)*(1+5*x*A(x)^2)) + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/(1 - (m+1)*x*A^2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, m!*x^m*A^(2*m)/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1 + k*x*A^2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A197996 A258622 A290442 * A308599 A367316 A139678
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2018
STATUS
approved