login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316368
L.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n satisfies: Sum_{n>=0} (log(1 + 3^n*x) - A(x))^n / n! = 1.
1
3, 27, 5967, 5697567, 31847802183, 1195671270431187, 326058737699333461707, 675917435446065515610996255, 10962564428448588841282872538419771, 1418440155472251470046024633146709425948667, 1484885879650092405217931878354260186060716460431319, 12712226189522682755929156185294269966327457982317234267691359
OFFSET
1,1
EXAMPLE
L.g.f. A(x) = 3*x + 27*x^2/2 + 5967*x^3/3 + 5697567*x^4/4 + 31847802183*x^5/5 + 1195671270431187*x^6/6 + 326058737699333461707*x^7/7 + 675917435446065515610996255*x^8/8 + ...
such that
1 = 1 + (log(1 + 3*x) - A(x)) + (log(1 + 3^2*x) - A(x))^2/2! + (log(1 + 3^3*x) - A(x))^3/3! + (log(1 + 3^4*x) - A(x))^4/4! + (log(1 + 3^5*x) - A(x))^5/5! + ... + (log(1 + 3^n*x) - A(x))^n / n! + ...
RELATED SERIES.
exp(A(x)) = 1 + 3*x + 18*x^2 + 2034*x^3 + 1430514*x^4 + 6373869750*x^5 + 199297681460658*x^6 + 46580417624524112586*x^7 + ... + A316369(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[3]); for(i=1, n, A=concat(A, 0); A[#A] = Vec(sum(n=0, #A+1, (log(1 + 3^n*x +x*O(x^#A) ) - x*Ser(A))^n/n! ))[#A+1]); n*A[n]}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A137092 A122215 A122217 * A068221 A068222 A308384
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2018
STATUS
approved