login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316371
G.f.: A(x) = Sum_{n>=0} binomial(3*(n+1), n)/(n+1) * x^n / (1+x)^(2*(n+1)).
5
1, 1, 3, 9, 30, 105, 382, 1429, 5463, 21248, 83813, 334485, 1348102, 5479366, 22433934, 92437445, 383026643, 1595053047, 6672007021, 28020635404, 118106170713, 499454897337, 2118477808719, 9010443044061, 38420834606794, 164210479691902, 703352241046710, 3018668702116310, 12979807315841432, 55908387904005714
OFFSET
0,3
COMMENTS
Note that: binomial(3*(n+1), n)/(n+1) = A001764(n+1) for n >= 0, where F(x) = Sum_{n>=0} A001764(n)*x^n satisfies F(x) = 1 + x*F(x)^3.
Compare the g.f. to:
(C1) M(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(n+1) where M(x) = 1 + M(x) + M(x)^2 is the g.f. of Motzkin numbers (A001006).
(C2) 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
(C3) If S(x,p,q) = Sum_{n>=0} binomial(p*(n+1),n)/(n+1) * x^n/(1+x)^(q*(n+1)), then Series_Reversion ( x*S(x,p,q) ) = x*S(x,q,p) holds for fixed p and q.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A( 1/A(x) - 1 ) = 1/(1+x).
(2) A(x) = (1 + 3*x^2*A(x)^2 + x^3*A(x)^3) / (1 - x + x^2).
(3) A(x) = (1/x) * Series_Reversion( (1 + x + 3*x^2 + x^3 - (1+x)*sqrt(1 + 2*x^2 + 4*x^3 + x^4))/(2*x) ).
a(n) ~ 33^(1/4) * (19 + 3*sqrt(33))^(n+1) / (sqrt(3*Pi) * n^(3/2) * 2^(3*n + 5)). - Vaclav Kotesovec, Jul 06 2018
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 105*x^5 + 382*x^6 + 1429*x^7 + 5463*x^8 + 21248*x^9 + 83813*x^10 + 334485*x^11 + 1348102*x^12 + ...
such that
A(x) = 1/(1+x)^2 + 3*x/(1+x)^4 + 12*x^2/(1+x)^6 + 55*x^3/(1+x)^8 + 273*x^4/(1+x)^10 + 1428*x^5/(1+x)^12 + ... + A001764(n+1)*x^n/(1+x)^(2*(n+1)) + ...
RELATED SERIES.
(E1) 1 - 1/A(x) = x + 2*x^2 + 4*x^3 + 11*x^4 + 34*x^5 + 114*x^6 + 402*x^7 + 1470*x^8 + 5522*x^9 + 21181*x^10 + 82610*x^11 + 326611*x^12 + ...
where A(1/A(x) - 1) = 1/(1+x).
(E2) Series_Reversion( x*A(x) ) = x - x^2 - x^3 + x^4 + 2*x^5 - 4*x^7 - 4*x^8 + 5*x^9 + 15*x^10 + 4*x^11 - 34*x^12 - 49*x^13 + 35*x^14 + 174*x^15 + ...
which equals the sum:
Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(3*(n+1)).
PROG
(PARI) {a(n) = my(A = sum(m=0, n, binomial(3*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(2*(m+1)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A360715 A029651 A003409 * A181933 A148957 A148958
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 02 2018
STATUS
approved