login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181933
a(n) = Sum_{k=0..n} binomial(n+k,k)*sin(Pi*(n+k)/2).
2
0, 1, -3, 9, -30, 106, -385, 1421, -5304, 19966, -75658, 288222, -1102790, 4234868, -16312773, 63003869, -243896960, 946066678, -3676303578, 14308370014, -55768166380, 217640082188, -850345208538, 3325907590274, -13020993588680
OFFSET
0,3
LINKS
FORMULA
G.f.: (1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1). - Vladimir Kruchinin, Mar 28 2016
a(n) ~ (-1)^(n+1) *2^(2*n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 28 2016
Conjecture: +2*n*a(n) +8*n*a(n-1) +(-n+20)*a(n-2) +5*(-n+4)*a(n-3) +2*(-2*n+5)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
MATHEMATICA
f[n_] := Sum[ Binomial[n + k, k] Sin[Pi (n + k)/2], {k, 0, n}]; Array[f, 25, 0]
PROG
(Maxima)
makelist(coeff(taylor(1/2*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1), x, 0, 20), x, n), n, 0, 20); /* Vladimir Kruchinin, Mar 28 2016 */
(PARI) x='x+O('x^50); concat([0], Vec((1/2)*(sqrt(4*x+1)*(1+x)-3*x-1)/(sqrt(4*x+1)*(x^2+3*x+1)-4*x^2-5*x-1))) \\ G. C. Greubel, Mar 24 2017
CROSSREFS
Sequence in context: A029651 A003409 A316371 * A148957 A148958 A024332
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Apr 02 2012
STATUS
approved