login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181936 Number of 5-alternating permutations. 5
1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

For an integer n>0, a permutation s = s_1...s_k is a n-alternating permutation if it has the property that s_i < s_{i+1} if and only if n divides i.

REFERENCES

Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

R. J. Cano, PARI Sequencer program.

Peter Luschny, An old operation on sequences: the Seidel transform.

Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]

Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]

MAPLE

A181936_list := proc(dim) local E, DIM, n, k;

DIM := dim-1; E := array(0..DIM, 0..DIM); E[0, 0] := 1;

for n from 1 to DIM do

if n mod 5 = 0 then E[n, 0] := 0 ;

   for k from n-1 by -1 to 0 do E[k, n-k] := E[k+1, n-k-1] + E[k, n-k-1] od;

else E[0, n] := 0;

   for k from 1 by 1 to n do E[k, n-k] := E[k-1, n-k+1] + E[k-1, n-k] od;

fi od; [E[0, 0], seq(E[k, 0]+E[0, k], k=1..DIM)] end:

A181936_list(28);

# Alternatively, using an exponential generating function:

A181936_list := proc(n) local H, F, i; H := (r, s) -> hypergeom(r, s/5, -(t/5)^5);

F := t -> 1+(t^5*H([1], [6, 7, 8, 9, 10])+5*t^4*H([], [6, 7, 8, 9])+20*t^3*H([], [4, 6, 7, 8])+60*t^2*H([], [3, 4, 6, 7])+120*t^1*H([], [2, 3, 4, 6]))/(120*H([], [2, 3, 4, 1])); seq(i!*coeff(series(F(t), t, n+1), t, i), i=0..n-1) end:

MATHEMATICA

dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[_, _] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)

b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,

     Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}],

     Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]];

a[n_] := b[n, 0, 0];

a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after _Alois P. Heinz in A250283 *)

nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)

PROG

(Sage)

@cached_function

def A(m, n):

    if n == 0: return 1

    s = -1 if m.divides(n) else 1

    t = [m*k for k in (0..(n-1)//m)]

    return s*add(binomial(n, k)*A(m, k) for k in t)

A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5, n)

print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017

CROSSREFS

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), this sequence (m=5), A250283 (m=6), A250284 (m=7), A250285 (m=8), A250286 (m=9), A250287 (m=10).

Row n=5 of A181937.

Sequence in context: A289306 A325731 A062988 * A226639 A264874 A270092

Adjacent sequences:  A181933 A181934 A181935 * A181937 A181938 A181939

KEYWORD

nonn

AUTHOR

Peter Luschny, Apr 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 17:41 EDT 2021. Contains 343742 sequences. (Running on oeis4.)