login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181936
Number of 5-alternating permutations.
5
1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375
OFFSET
0,7
COMMENTS
For an integer n>0, a permutation s = s_1...s_k is a n-alternating permutation if it has the property that s_i < s_{i+1} if and only if n divides i.
REFERENCES
Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
LINKS
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
MAPLE
A181936_list := proc(dim) local E, DIM, n, k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0, 0] := 1;
for n from 1 to DIM do
if n mod 5 = 0 then E[n, 0] := 0 ;
for k from n-1 by -1 to 0 do E[k, n-k] := E[k+1, n-k-1] + E[k, n-k-1] od;
else E[0, n] := 0;
for k from 1 by 1 to n do E[k, n-k] := E[k-1, n-k+1] + E[k-1, n-k] od;
fi od; [E[0, 0], seq(E[k, 0]+E[0, k], k=1..DIM)] end:
A181936_list(28);
# Alternatively, using an exponential generating function:
A181936_list := proc(n) local H, F, i; H := (r, s) -> hypergeom(r, s/5, -(t/5)^5);
F := t -> 1+(t^5*H([1], [6, 7, 8, 9, 10])+5*t^4*H([], [6, 7, 8, 9])+20*t^3*H([], [4, 6, 7, 8])+60*t^2*H([], [3, 4, 6, 7])+120*t^1*H([], [2, 3, 4, 6]))/(120*H([], [2, 3, 4, 1])); seq(i!*coeff(series(F(t), t, n+1), t, i), i=0..n-1) end:
MATHEMATICA
dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[_, _] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}],
Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
PROG
(Sage)
@cached_function
def A(m, n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n, k)*A(m, k) for k in t)
A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5, n)
print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
CROSSREFS
Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), this sequence (m=5), A250283 (m=6), A250284 (m=7), A250285 (m=8), A250286 (m=9), A250287 (m=10).
Row n=5 of A181937.
Sequence in context: A325731 A348310 A062988 * A226639 A264874 A270092
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 03 2012
STATUS
approved