login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348310
a(n) = Sum_{k=0..floor(n/10)} (-1)^k * binomial(n-5*k,5*k).
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -251, -461, -791, -1286, -2001, -3001, -4356, -6121, -8281, -10626, -12500, -12340, -6885, 10110, 49875, 131626, 286921, 565781, 1044971, 1838626, 3110751, 5087561, 8064366, 12395461, 18444251, 26451625, 36249035, 46692715, 54618710
OFFSET
0,12
LINKS
FORMULA
G.f.: (1-x)^4/((1-x)^5 + x^10).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) - a(n-10).
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
PROG
(PARI) a(n) = sum(k=0, n\10, (-1)^k*binomial(n-5*k, 5*k));
(PARI) my(N=66, x='x+O('x^N)); Vec((1-x)^4/((1-x)^5+x^10))
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Oct 11 2021
STATUS
approved