|
|
A366057
|
|
Expansion of (1/x) * Series_Reversion( x/(1-x+x^5) ).
|
|
1
|
|
|
1, -1, 1, -1, 1, 0, -5, 20, -55, 125, -246, 406, -461, -144, 3004, -11978, 35113, -86293, 181663, -314603, 365922, 150023, -2696308, 10969573, -32970453, 82976409, -178372934, 314133884, -367436684, -179661091, 2923282216, -11972239216, 36369188841, -92517132841
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^(n-k) * binomial(n+1,k) * binomial(n-k+1,n-5*k).
|
|
PROG
|
(PARI) a(n) = sum(k=0, n\5, (-1)^(n-k)*binomial(n+1, k)*binomial(n-k+1, n-5*k))/(n+1);
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|