login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351931
Expansion of e.g.f. exp(x - x^5/120).
3
1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -125, 925, 7525, 34750, 124125, 249250, -1013375, -14708875, -97413875, -477236375, -1443329375, 3466472500, 91499089375, 804081585000, 5030009685625, 20366827624375, -23484049500625, -1391395435656875, -15503027252406875
OFFSET
0,7
FORMULA
a(n) = n! * Sum_{k=0..floor(n/5)} (-1/5!)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) - binomial(n-1,4) * a(n-5) for n > 4.
MATHEMATICA
m = 28; Range[0, m]! * CoefficientList[Series[Exp[x - x^5/5!], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^5/5!)))
(PARI) a(n) = n!*sum(k=0, n\5, (-1/5!)^k*binomial(n-4*k, k)/(n-4*k)!);
(PARI) a(n) = if(n<5, 1, a(n-1)-binomial(n-1, 4)*a(n-5));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 26 2022
STATUS
approved