login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351928
Smallest positive integer k such that 2^k has no '2' in the last n digits of its ternary expansion.
2
2, 2, 6, 8, 8, 8, 20, 24, 24, 24, 72, 186, 186, 332, 332, 1134, 1134, 1134, 1134, 1134, 1134, 25458, 25458, 25458, 25458, 25458, 25458, 159140, 249968, 249968, 249968, 249968, 249968, 249968, 249968, 249968, 9076914, 9076914, 9076914, 9076914, 9076914, 9076914, 90062678
OFFSET
1,1
COMMENTS
The powers of two are required to have at least n ternary digits, i.e., 2^k >= 3^(n-1).
Erdős (~1978) conjectured that 1, 4, and 256 are the only powers of two whose ternary expansion consists solely of 0's and 1's.
LINKS
Paul Erdős, Some unconventional problems in number theory, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.
Robert I. Saye, On two conjectures concerning the ternary digits of powers of two, arXiv:2202.13256 [math.NT], 2022.
MATHEMATICA
smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]]; While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 2], ++k]; k]; Table[smallest[n], {n, 1, 20}]
PROG
(PARI) a(n) = my(k=max(1, logint(3^(n-1), 2))); while(#select(x->(x==2), Vec(Vecrev(digits(2^k, 3)), n)), k++); k; \\ Michel Marcus, Feb 26 2022
(Python)
from sympy.ntheory.digits import digits
def a(n, startk=1):
k = max(startk, len(bin(3**(n-1))[2:]))
pow2 = 2**k
while 2 in digits(pow2, 3)[-n:]:
k += 1
pow2 *= 2
return k
an = 0
for n in range(1, 22):
an = a(n, an)
print(an, end=", ") # Michael S. Branicky, Feb 27 2022
(Python)
from itertools import count
def A351928(n):
kmax, m = 3**n, (3**(n-1)).bit_length()
k2 = pow(2, m, kmax)
for k in count(m):
a = k2
while a > 0:
a, b = divmod(a, 3)
if b == 2:
break
else:
return k
k2 = 2*k2 % kmax # Chai Wah Wu, Mar 19 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert Saye, Feb 25 2022
STATUS
approved