OFFSET
0,6
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (-1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
D-finite with recurrence a(n) = a(n-1) - binomial(n-1,3) * a(n-4) for n > 3.
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
`if`(n<4, 0, -a(n-4)*binomial(n-1, 3))+a(n-1))
end:
seq(a(n), n=0..27); # Alois P. Heinz, Feb 26 2022
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^4/4!)))
(PARI) a(n) = n!*sum(k=0, n\4, (-1/4!)^k*binomial(n-3*k, k)/(n-3*k)!);
(PARI) a(n) = if(n<4, 1, a(n-1)-binomial(n-1, 3)*a(n-4));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 26 2022
STATUS
approved