login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289306
a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k).
7
1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -250, -450, -725, -1000, -1000, 0, 3625, 13125, 34375, 76875, 153750, 278125, 450000, 621875, 621875, 0, -2250000, -8140625, -21312500, -47656250, -95312500, -172421875, -278984375, -385546875, -385546875, 0, 1394921875
OFFSET
0,7
COMMENTS
{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jul 24 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
FORMULA
G.f.: -((-1+x)^4/((-1+x)^5-x^5)). - Peter J. C. Moses, Jul 02 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*n/10) + (phi-1)^n*cos(3 * Pi* n/10)), where phi is the golden ratio. In particular, a(n) = 0 if and only if n==5 (mod 10).
a(n+m) = a(n)*a(m) - K_5(n)*K_2(m) - K_4(n)*K_3(m) - K_3(n)*K_4(m) - K_2(n)*K_5(m), where K_2 is A289321, K_3 is A289387, K_4 is A289388, K_5 is A289389. - Vladimir Shevelev, Jul 24 2017
MATHEMATICA
Table[Sum[(-1)^k*Binomial[n, 5 k], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[-((-1 + x)^4/((-1 + x)^5 - x^5)), {x, 0, 36}], x] (* Michael De Vlieger, Jul 04 2017 *)
LinearRecurrence[{5, -10, 10, -5}, {1, 1, 1, 1, 1}, 40] (* Harvey P. Dale, Dec 23 2018 *)
PROG
(PARI) a(n) = sum(k=0, n\5, (-1)^k*binomial(n, 5*k)); \\ Michel Marcus, Jul 02 2017
CROSSREFS
Column 5 of A307039.
Sequence in context: A090133 A351931 A366057 * A325731 A348310 A062988
KEYWORD
sign,easy
AUTHOR
Vladimir Shevelev, Jul 02 2017
STATUS
approved