login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289307
Coefficients in expansion of E_4^(1/4) in powers of q.
14
1, 60, -4860, 660480, -105063420, 18206269560, -3328461434880, 631226199152640, -122944850563477500, 24436796345920143420, -4935178772322020730360, 1009598430837232126725120, -208736157503462405753487360, 43541664791244563211024015480
OFFSET
0,2
LINKS
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.3. Example 3.
R. S. Maier, Nonlinear differential equations satisfied by certain classical modular forms, arXiv:0807.1081 [math.NT], 2008-2010, p. 34 equation (7.29a).
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/4).
G.f.: 2F1(1/12, 5/12; 1; 1728/j) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 06 2017 [See also the Kontsevich and Zagier link, where t = 1728/j = 1 - Sum_{k>=0} A289210(k)*q^k, with q = q(z) = exp(2*Pi*I*z), Im(z) > 0. - Wolfdieter Lang, May 27 2018]
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(5/4), where c = sqrt(3) * Gamma(1/3)^(9/2) * Gamma(1/4) / (16 * 2^(3/4) * Pi^4) = 0.201967785736579402060958871696381229013432952780653381728912717635... - Vaclav Kotesovec, Jul 07 2017, updated Mar 04 2018
EXAMPLE
From Seiichi Manyama, Jul 07 2017: (Start)
2F1(1/12, 5/12; 1; 1728/j)
= 1 + (1*5)/(1*1) * 12/j + (1*5*13*17)/(1*1*2*2) * (12/j)^2 + (1*5*13*17*25*29)/(1*1*2*2*3*3) * (12/j)^3 + ...
= 1 + 60/j + 39780/j^2 + 38454000/j^3 + ...
= 1 + 60*q - 44640*q^2 + 21399120*q^3 - ...
+ 39780*q^2 - 59192640*q^3 + ...
+ 38454000*q^3 - ...
+ ...
= 1 + 60*q - 4860*q^2 + 660480*q^3 - ... (End)
MATHEMATICA
a[ n_] := SeriesCoefficient[ ComposeSeries[ Series[ Hypergeometric2F1[ 1/12, 5/12, 1, q], {q, 0, n}], q^2 / Series[q^2 KleinInvariantJ[ Log[q]/(2 Pi I)], {q, 0, n}]], {q, 0, n}]; (* Michael Somos, Jun 21 2018 *)
CROSSREFS
E_4^(k/8): A108091 (k=1), this sequence (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A000521 (j), A004009 (E_4), A066395 (1/j), A092870, A110163, A289210.
Sequence in context: A293091 A074076 A084274 * A091032 A328951 A178785
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 02 2017
STATUS
approved