login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108091 Coefficients of series whose 8th power is the theta series of E_8 (see A004009). 23
1, 30, -2880, 416640, -69178110, 12378401280, -2321610157440, 449733567736320, -89200812128140800, 18013245273252679710, -3689479088922151082880, 764375901202388789804160, -159862757100127037505991680, 33699694000689939789618455040, -7152050326608893289997995966720, 1526705794390267864554876727856640 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
N. J. A. Sloane, Seven Staggering Sequences.
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/8). - Seiichi Manyama, Jul 02 2017
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(9/8), where c = 3^(1/4) * Gamma(1/3)^(9/4) / (2^(33/8) * Pi^(3/2) * Gamma(7/8)) = 0.1141392450598624077174159151600898926678394937157356242319309115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A300147(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 27 2018
G.f.: Sum_{k>=0} A303007(k) * (-f(q))^k where f(q) is Sum_{k>=1} sigma_3(k)*q^k. - Seiichi Manyama, Jun 15 2018
EXAMPLE
More precisely, the theta series of E_8 begins 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + ... and the 8th root of this is 1 + 30*q^2 - 2880*q^4 + 416640*q^6 - 69178110*q^8 + ...
MATHEMATICA
nmax = 20; s = 8; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/16), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
PROG
(Sage)
R.<q> = PowerSeriesRing(ZZ, 20)
a = R(eisenstein_series_qexp(4, 20, normalization='integral'))
list(a.sqrt().sqrt().sqrt()) # Andy Huchala, Jul 10 2021
CROSSREFS
E_4^(k/8): this sequence (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5).
Sequence in context: A091544 A230728 A352652 * A036363 A230591 A352182
KEYWORD
sign
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 19:26 EST 2024. Contains 370332 sequences. (Running on oeis4.)