login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108091
Coefficients of series whose 8th power is the theta series of E_8 (see A004009).
29
1, 30, -2880, 416640, -69178110, 12378401280, -2321610157440, 449733567736320, -89200812128140800, 18013245273252679710, -3689479088922151082880, 764375901202388789804160, -159862757100127037505991680, 33699694000689939789618455040, -7152050326608893289997995966720, 1526705794390267864554876727856640
OFFSET
0,2
REFERENCES
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
N. J. A. Sloane, Seven Staggering Sequences.
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/8). - Seiichi Manyama, Jul 02 2017
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(9/8), where c = 3^(1/4) * Gamma(1/3)^(9/4) / (2^(33/8) * Pi^(3/2) * Gamma(7/8)) = 0.1141392450598624077174159151600898926678394937157356242319309115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A300147(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 27 2018
G.f.: Sum_{k>=0} A303007(k) * (-f(q))^k where f(q) is Sum_{k>=1} sigma_3(k)*q^k. - Seiichi Manyama, Jun 15 2018
EXAMPLE
More precisely, the theta series of E_8 begins 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + ... and the 8th root of this is 1 + 30*q^2 - 2880*q^4 + 416640*q^6 - 69178110*q^8 + ...
MATHEMATICA
nmax = 20; s = 8; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/16), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
PROG
(Sage)
R.<q> = PowerSeriesRing(ZZ, 20)
a = R(eisenstein_series_qexp(4, 20, normalization='integral'))
list(a.sqrt().sqrt().sqrt()) # Andy Huchala, Jul 10 2021
CROSSREFS
E_4^(k/8): this sequence (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), A289309 (k=5).
Sequence in context: A091544 A230728 A352652 * A036363 A230591 A352182
KEYWORD
sign
AUTHOR
STATUS
approved