login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108094
Coefficients of series whose 16th power is the theta series of the 16-dimensional Barnes-Wall lattice (see A008409).
2
1, 0, 270, 3840, -514080, -15413760, 1283087040, 62644907520, -3378279124350, -252933976704000, 8502815843769600, 1007506223570707200, -17757117956815481280, -3942183666885514421760, 14527133705347401150720, 15088544258811557869278720, 144818514010649047069497600
OFFSET
0,3
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
EXAMPLE
More precisely, the theta series of the Barnes-Wall lattice begins 1 + 4320*q^2 + 61440*q^3 + 522720*q^4 + 2211840*q^5 + 8960640*q^6 + 23224320*q^7 + ... and the 16th root of this is 1 + 270*q^2 + 3840*q^3 - 514080*q^4 - 15413760*q^5 + 1283087040*q^6 + 62644907520*q^7 - ...
MATHEMATICA
f[q_] := 1/2 (EllipticTheta[2, 0, q]^16 + EllipticTheta[3, 0, q]^16 + EllipticTheta[4, 0, q]^16 + 30 EllipticTheta[2, 0, q]^8 EllipticTheta[3, 0, q]^8);
CoefficientList[f[q]^(1/16) + O[q]^17, q] (* Jean-François Alcover, Aug 17 2018 *)
CROSSREFS
Sequence in context: A028529 A109025 A028535 * A162007 A289136 A317476
KEYWORD
sign
AUTHOR
STATUS
approved