login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289387
a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).
5
0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
OFFSET
0,4
COMMENTS
{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the first Shevelev link respectively.
From Robert Israel, Jul 11 2017: (Start)
a(n)=0 for n == 9 (mod 10).
A112765(a(10*k)) = (5/2)*k - 3/4 - (-1)^k/4.
A112765(a(10*k+2)) = (5/2)*k - 1/4 + (-1)^k/4.
A112765(a(10*k+3)) = A112765(a(10*k+4)) = (5/2)*k + 1/4 - (-1)^k/4.
A112765(a(10*k+5)) = A112765(a(10*k+6)) = (5/2)*k + 3/4 + (-1)^k/4.
A112765(a(10*k+7)) = A112765(a(10*k+8)) = (5/2)*k + 5/4 - (-1)^k/4. (End)
Note that from author's formula (see below) we have that, except for zeros in the sequence mentioned by Robert Israel, there are only a(0) = a(1) = 0. Indeed, otherwise for some value of n we should have the equality (phi-1)^n = -cos(Pi*(n-4)/10)/cos(3*Pi*(n-4)/10). However, the absolute value of the right hand side takes the six distinct values only: 1, phi, phi^2, phi^(-1), phi^(-2), 1/3 (the last value we have when n == 9 (mod 10), since lim_{x->Pi/2}cos(x)/cos(3*x)= -1/3). Thus for n>=3, we have (phi-1)^n = phi^(-n) < |cos(Pi*(n-4)/10)/cos(3*Pi*(n-4)/10)|. - Vladimir Shevelev, Jul 15 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
FORMULA
G.f.: -((-1+x)^2*x^2)/((-1+x)^5 - x^5). - Peter J. C. Moses, Jul 05 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*(n-4)/10) + (phi-1)^n*cos(3* Pi*(n-4)/10)), where phi is the golden ratio.
a(n+m) = a(n)*K_1(m) + K_2(n)*K_2(m) + K_1(n)*a(m) - K_5(n)*K_4(m) - K_4(n)*K_5(m), where K_1 is A289306, K_2 is A289321, K_4 is A289388, K_5 is A289389.
For every n>=1, the determinant of circulant matrix of order 5 (see [Wikipedia]) with the entries (-1)^(i-1)* K_i(n), i=1..5, is 0. Here K_1, K_2, K_4 and K_5 are the same as in the previous formula, while K_3(n) = a(n). For a proof and a generalization see the second Shevelev link that also contains two unsolved problems. - Vladimir Shevelev, Jul 26 2017
MAPLE
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
a(1)=0, a(2)=1, a(3) = 3, a(4)=6}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jul 11 2017
MATHEMATICA
Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *)
CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
PROG
(PARI) a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017
KEYWORD
sign,easy,changed
AUTHOR
Vladimir Shevelev, Jul 05 2017
EXTENSIONS
More terms from Peter J. C. Moses, Jul 05 2017
STATUS
approved