login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289384
Numbers k such that the sum of the divisors of k is of the form m^3 + 1.
1
1, 12, 68, 82, 100, 730, 886, 1089, 1241, 1252, 1352, 1440, 1908, 2804, 2947, 3274, 5598, 6078, 7414, 9123, 10135, 10164, 10804, 10809, 11143, 12756, 13456, 13468, 15004, 21025, 23810, 24642, 25123, 26912, 26983, 34976, 37020, 40477, 45946, 48126, 55964, 56764
OFFSET
1,2
COMMENTS
Perfect squares in the sequence are 1, 100, 1089, 13456, 21025, ...
LINKS
EXAMPLE
730 is in the sequence because sigma(730) = 1332 = 11^3 + 1.
MAPLE
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1)) while (t->t<>
iroot(t, 3)^3)(numtheory[sigma](k)-1) do od; k
end:
seq(a(n), n=1..40); # Alois P. Heinz, Jul 04 2017
MATHEMATICA
fQ[n_] := ! PrimeQ@n && Block[{sd = DivisorSigma[1, n]}, IntegerQ[(sd - 1)^(1/3)]]; Select[Range@59323, fQ] (* Robert G. Wilson v, Jul 05 2017 *)
PROG
(PARI) isok(n) = ispower(sigma(n)-1, 3); \\ Michel Marcus, Jul 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 04 2017
EXTENSIONS
More terms from Alois P. Heinz, Jul 04 2017
STATUS
approved