|
|
A289384
|
|
Numbers k such that the sum of the divisors of k is of the form m^3 + 1.
|
|
1
|
|
|
1, 12, 68, 82, 100, 730, 886, 1089, 1241, 1252, 1352, 1440, 1908, 2804, 2947, 3274, 5598, 6078, 7414, 9123, 10135, 10164, 10804, 10809, 11143, 12756, 13456, 13468, 15004, 21025, 23810, 24642, 25123, 26912, 26983, 34976, 37020, 40477, 45946, 48126, 55964, 56764
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Perfect squares in the sequence are 1, 100, 1089, 13456, 21025, ...
|
|
LINKS
|
|
|
EXAMPLE
|
730 is in the sequence because sigma(730) = 1332 = 11^3 + 1.
|
|
MAPLE
|
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1)) while (t->t<>
iroot(t, 3)^3)(numtheory[sigma](k)-1) do od; k
end:
|
|
MATHEMATICA
|
fQ[n_] := ! PrimeQ@n && Block[{sd = DivisorSigma[1, n]}, IntegerQ[(sd - 1)^(1/3)]]; Select[Range@59323, fQ] (* Robert G. Wilson v, Jul 05 2017 *)
|
|
PROG
|
(PARI) isok(n) = ispower(sigma(n)-1, 3); \\ Michel Marcus, Jul 05 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|