|
|
A059585
|
|
Number of labeled 3-node T_0-hypergraphs with n hyperedges (empty hyperedges and multiple hyperedges included).
|
|
3
|
|
|
0, 0, 12, 68, 235, 636, 1478, 3088, 5958, 10800, 18612, 30756, 49049, 75868, 114270, 168128, 242284, 342720, 476748, 653220, 882759, 1178012, 1553926, 2028048, 2620850, 3356080, 4261140, 5367492, 6711093, 8332860, 10279166, 12602368
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A hypergraph is a T_0 hypergraph if for every two distinct nodes there exists a hyperedge containing one but not the other node.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = binomial(n + 7, n) - 3*binomial(n + 3, n) + 2*binomial(n + 1, n) = n*(n - 1)*(n + 1)*(n^4 + 28*n^3 + 323*n^2 + 1988*n + 4572)/5040.
G.f.: x^2*(2-x)^2*(3-4*x+2*x^2)/(1-x)^8. - Colin Barker, Jun 25 2012
|
|
MAPLE
|
for n from 0 to 100 do printf(`%d, `, n*(n - 1)*(n + 1)*(n^4 + 28*n^3 + 323*n^2 + 1988*n + 4572)/5040) od:
|
|
MATHEMATICA
|
CoefficientList[Series[x^2*(2 - x)^2*(3 - 4*x + 2*x^2)/(1 - x)^8, {x, 0, 50}], x] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 12, 68, 235, 636, 1478, 3088}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
|
|
PROG
|
(PARI) x='x+O('x^50); concat([0, 0], Vec(x^2*(2-x)^2*(3-4*x+2*x^2)/(1-x)^8)) \\ G. C. Greubel, Oct 06 2017
(Magma) [n*(n-1)*(n+1)*(n^4+28*n^3+323*n^2+1988*n+ 4572)/5040: n in [0..35]]; // Vincenzo Librandi, Oct 07 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|