login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359715
Column 2 of triangle A359670; a(n) = A359670(n+2,2) for n >= 0.
1
1, 12, 68, 284, 998, 3092, 8724, 22904, 56679, 133516, 301664, 657368, 1387854, 2849168, 5704476, 11166464, 21415632, 40312176, 74593476, 135864792, 243872632, 431835140, 755039948, 1304589104, 2229192801, 3769452152, 6311385252, 10469412968, 17214152072
OFFSET
0,2
COMMENTS
The g.f. G(x,y) of triangle A359670 satisfies: G(x,y) = 1/[Sum_{n=-oo..+oo} (-1)^n * (x*y*G(x,y) + x^n)^n].
PROG
(PARI) {a(n) = my(A=1); for(i=1, n+2,
A = 1/sum(m=-#A, #A, (-1)^m * (x*y*A + x^m + x*O(x^(n+2)) )^m ) );
polcoeff( polcoeff( A, n+2, x), 2, y)}
for(n=0, 30, print1( a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n+2, A = concat(A, 0);
A[#A] = polcoeff(-y + sum(m=-#A, #A, (-1)^m * x^m * (y*Ser(A) + x^(m-1))^(m+1) )/(-y), #A-1, x) ); polcoeff( A[n+3], 2, y)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A359670.
Sequence in context: A059585 A213547 A050484 * A238536 A096425 A212753
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 17 2023
STATUS
approved