The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238536 A fourth-order linear divisibility sequence related to the Fibonacci numbers: a(n) = (1/2)*Fibonacci(3*n)*Lucas(n). 11
 1, 12, 68, 504, 3355, 23256, 158717, 1089648, 7463884, 51170460, 350695511, 2403786672, 16475579353, 112925875764, 774003961940, 5305106018016, 36361727272627, 249227013404808, 1708227291909269, 11708364225400920, 80250321774226396, 550043889533755332, 3770056901455017263 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let P and Q be integers. The Lucas sequences U(n) and V(n) (which depend on P and Q) are a pair of integer sequences that satisfy the recurrence equation a(n) = P*a(n-1) - Q*a(n-2) with the initial conditions U(0) = 0, U(1) = 1 and V(0) = 2, V(1) = P, respectively. The sequence {U(n)} n >= 1 is a linear divisibility sequence of order 2, i.e., U(n) divides U(m) whenever n divides m and U(n) <> 0. In general, V(n) is not a divisibility sequence. However, it can be shown that if p >= 3 is an odd integer then the sequence {U(p*n)*V(n)} n >= 1 is a linear divisibility sequence of order 4. For a proof and a generalization of this result see the Bala link. Here we take p = 3 with P = 1 and Q = -1, for which U(n) is the sequence of Fibonacci numbers, A000045, V(n) is the sequence of Lucas numbers, A000032, and normalize the sequence to have the initial term 1. For other sequences of this type see A238537 and A238538. REFERENCES S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1185 Wikipedia, Divisibility sequence Wikipedia, Lucas sequence Index entries for linear recurrences with constant coefficients, signature (4,19,4,-1). FORMULA a(n) = (1/2)*Fibonacci(3*n)*Lucas(n) = (1/2)*A000045(3*n)*A000032(n). a(n) = (1/2)*Fibonacci(2*n)*Fibonacci(3*n)/Fibonacci(n). a(n) = (1/(2*sqrt(5)))*( ((7 + 3*sqrt(5))/2)^n - ((7 - 3*sqrt(5))/2)^n + (-1)^n*((3 + sqrt(5))/2)^n - (-1)^n*((3 - sqrt(5))/2)^n ). The sequence can be extended to negative indices by setting a(-n) = -a(n). O.g.f. x*(1 + 8*x + x^2)/( (1 + 3*x + x^2)*(1 - 7*x + x^2) ). Recurrence equation: a(n) = 4*a(n-1) + 19*a(n-2) + 4*a(n-3) - a(n-4). a(n) = (1/2) * (Fibonacci(4*n) + (-1)^n*Fibonacci(2*n)). - Ralf Stephan, Mar 01 2014 MAPLE with(combinat): lucas:= n->fibonacci(n+1)+ fibonacci(n-1): seq(1/2*lucas(n)*fibonacci(3*n), n = 1..24); MATHEMATICA Table[Fibonacci(3*n)*Lucas(n)/2, {n, 1, 30}] (* or *) Join[{1}, LinearRecurrence[{4, 19, 4, -1}, {12, 68, 504, 3355}, 30]] (* G. C. Greubel, Dec 25 2017 *) PROG (PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 4, 19, 4]^(n-1)*[1; 12; 68; 504])[1, 1] \\ Charles R Greathouse IV, Oct 07 2016 (MAGMA) I:=[12, 68, 504, 3355];  cat [n le 4 select I[n] else 4*Self(n-1) + 19*Self(n-2) + 4*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 25 2017 CROSSREFS Cf. A000032, A000045, A127595, A215466, A238537, A238538. Sequence in context: A059585 A213547 A050484 * A096425 A212753 A210427 Adjacent sequences:  A238533 A238534 A238535 * A238537 A238538 A238539 KEYWORD nonn,easy AUTHOR Peter Bala, Feb 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 04:01 EDT 2021. Contains 345450 sequences. (Running on oeis4.)