login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238535 Sum of divisors d of n where d > sqrt(n). 35
0, 2, 3, 4, 5, 9, 7, 12, 9, 15, 11, 22, 13, 21, 20, 24, 17, 33, 19, 35, 28, 33, 23, 50, 25, 39, 36, 49, 29, 61, 31, 56, 44, 51, 42, 75, 37, 57, 52, 78, 41, 84, 43, 77, 69, 69, 47, 108, 49, 85, 68, 91, 53, 108, 66, 106, 76, 87, 59, 147, 61, 93, 93, 112, 78, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Properties of the sequence:

a(n) = n if n is prime because sigma(n) = n+1 and A066839(n) = 1;

a(p^2) = p^2 if p is prime because sigma(p^2) = p^2+p+1 and A066839(p^2)= p+1 => A000203(p^2) - A066839(p^2)= p^2;

a(m) = 2*m if m = A182147(n) = 42, 54, 66, 78, 102, 114,... (numbers n equal to the sum of its proper divisors greater than square root of n).

LINKS

Michel Lagneau, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A000203(n) - A066839(n).

EXAMPLE

a(8) = 12 because A000203(8)= 15 and A066839(8) = 3 => 15 - 8 = 12.

MATHEMATICA

lst={}; f[n_]:=DivisorSigma[1, n]-Plus@@Select[Divisors@n, #<=Sqrt@n&]; Do[If[IntegerQ[f[n]], AppendTo[lst, f[n]]], {n, 1, 200}]; lst

PROG

(PARI) a(n) = sumdiv(n, d, d*(d>sqrt(n))); \\ Michel Marcus, Feb 28 2014

(Sage)

def a(n):

    return sum([d for d in Integer(n).divisors() if d>sqrt(n)]) # Ralf Stephan, Mar 08 2014

CROSSREFS

Cf. A000203, A066839, A182147, A238502.

Sequence in context: A068795 A222257 A327456 * A327415 A072501 A092975

Adjacent sequences:  A238532 A238533 A238534 * A238536 A238537 A238538

KEYWORD

nonn

AUTHOR

Michel Lagneau, Feb 28 2014

EXTENSIONS

Better name from Ralf Stephan, Mar 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 04:52 EDT 2021. Contains 343687 sequences. (Running on oeis4.)