The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A359712 a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-x)^n * (2*A(x) + x^(n-1))^(n+1). 12
 1, 4, 20, 106, 586, 3356, 19728, 118382, 722208, 4466050, 27931600, 176371300, 1122867012, 7199842666, 46454345844, 301384205640, 1964899532794, 12866563846920, 84585757496444, 558060746899684, 3693810227983576, 24521903234307786, 163234951757526400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows. (1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(n-1))^(n+1). (2) 2*x = Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^(n+1). (3) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n-1). (4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^n ]. (5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^(n+1))^n ]. From Paul D. Hanna, May 12 2023: (Start) (6) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (2*A(x) + x^n)^n. (7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (2*A(x) + x^n)^n ]. (8) 2*x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n+1). (9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^n)^(n+1). (10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^n)^n. (11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^n. (End) a(n) = Sum_{k=0..n} A359670(n,k)*2^k for n >= 0. EXAMPLE G.f.: A(x) = 1 + 4*x + 20*x^2 + 106*x^3 + 586*x^4 + 3356*x^5 + 19728*x^6 + 118382*x^7 + 722208*x^8 + 4466050*x^9 + 27931600*x^10 + ... PROG (PARI) {a(n) = my(A=1, y=2); for(i=1, n, A = 1/sum(m=-#A, #A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) ); polcoeff( A, n, x)} for(n=0, 25, print1( a(n), ", ")) (PARI) {a(n) = my(A=[1], y=2); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(-y + sum(n=-#A, #A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y), #A-1, x) ); A[n+1]} for(n=0, 25, print1( a(n), ", ")) CROSSREFS Cf. A359670, A359711, A359713, A363104, A363105, A361778. Sequence in context: A135159 A190724 A243585 * A365226 A263965 A265084 Adjacent sequences: A359709 A359710 A359711 * A359713 A359714 A359715 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 17 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 22:05 EDT 2024. Contains 375910 sequences. (Running on oeis4.)