login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361778
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * ((-x)^(n-1) - 2*A(x))^n.
3
1, 2, 7, 27, 109, 459, 2006, 9017, 41384, 193048, 912571, 4361939, 21045710, 102361864, 501349447, 2470556294, 12240270901, 60935582862, 304660949343, 1529125824203, 7701783889261, 38915600049447, 197206343307012, 1002023916642621, 5103911800972155, 26056404563941575
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 1 = Sum_{n=-oo..+oo} x^n * ((-x)^(n-1) - 2*A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (2*A(x) - (-x)^n)^n.
(3) 2*A(x) = Sum_{n=-oo..+oo} x^(3*n+1) * ((-x)^n - 2*A(x))^n.
(4) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 - 2*A(x)*(-x)^(n+1))^n.
(5) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 - 2*A(x)*(-x)^(n+1))^(n+1).
(6) 2*A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*A(x)*(-x)^(n+1))^(n+1).
(7) 0 = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - (-x)^n)^(n+1).
(8) 0 = Sum_{n=-oo..+oo} x^(3*n) * ((-x)^(n-1) - 2*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 27*x^3 + 109*x^4 + 459*x^5 + 2006*x^6 + 9017*x^7 + 41384*x^8 + 193048*x^9 + 912571*x^10 + ...
SPECIFIC VALUES.
A(1/7) = 1.63053651133635034184414884744745628155427916612173429157...
A(1/6) = 1.99892384479086071017436459041327119822244448085100733509...
A(x) = 2 at x = 0.166713109990638926829644490786806133084979604287174064...
Radius of convergence r and the value A(r) are given by
r = 0.182033752413024354859591633469061831146023401652842514076551...
A(r) = 2.63999965897091399750291467200041973752650665197493948118984006...
1/r = 5.4934867119096473651972990947886642212447897087082048838...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * ((-x)^(m-1) - 2*Ser(A))^m ), #A)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 10 2023
STATUS
approved