login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026759
a(n) = T(2n, n), T given by A026758.
10
1, 2, 7, 27, 109, 453, 1922, 8284, 36155, 159435, 709246, 3178992, 14343567, 65099245, 297015765, 1361584755, 6268757195, 28975155915, 134410918700, 625578384150, 2920488902795, 13672762887465, 64179220019365, 301987822527627
OFFSET
0,2
LINKS
FORMULA
a(n) = A002212(n+1) - A000245(n). - David Callan, Feb 01 2014
G.f.: ((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2). - G. C. Greubel, Oct 31 2019
MAPLE
seq(coeff(series(((1-x)*sqrt(1-4*x) - sqrt(1 -6*x +5*x^2))/(2*x^2), x, n+2), x, n), n = 0..30); # G. C. Greubel, Oct 31 2019
MATHEMATICA
CoefficientList[Normal[Series[((1-x)Sqrt[1-4x] -Sqrt[1-6x+5x^2])/(2x^2), {x, 0, 30}]], x] (* David Callan, Feb 01 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2)) \\ G. C. Greubel, Oct 31 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( ((1-x)*Sqrt(1 - 4*x) - Sqrt(1 - 6*x + 5*x^2))/(2*x^2) )); // G. C. Greubel, Oct 31 2019
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(((1-x)*sqrt(1-4*x) - sqrt(1-6*x+5*x^2))/(2*x^2)).list()
A077952_list(30) # G. C. Greubel, Oct 31 2019
KEYWORD
nonn
STATUS
approved