login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026758
Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and 1 <= k <= (n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
30
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 7, 16, 11, 5, 1, 1, 8, 23, 27, 16, 6, 1, 1, 10, 38, 66, 43, 22, 7, 1, 1, 11, 48, 104, 109, 65, 29, 8, 1, 1, 13, 69, 190, 279, 174, 94, 37, 9, 1, 1, 14, 82, 259, 469, 453, 268, 131, 46, 10, 1, 1, 16, 109, 410, 918, 1201, 721, 399, 177, 56, 11, 1
OFFSET
0,5
FORMULA
T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i+1)-to-(i+1, 2h+i+2) for i >= 0, h>=0.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 5, 7, 4, 1;
1, 7, 16, 11, 5, 1;
1, 8, 23, 27, 16, 6, 1;
1, 10, 38, 66, 43, 22, 7, 1;
MAPLE
T:= proc(n, k) option remember;
if k=0 or k = n then 1;
elif type(n, 'odd') and k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 29 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 29 2019 *)
PROG
(PARI) T(n, k) = if(k==0 || k==n, 1, if(n%2==1 && k<=(n-1)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 29 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n, 2)==1 and k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 29 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
elif (n mod 2)=1 and k<Int(n/2)+1 then return T(n-1, k-1)+T(n-2, k-1) +T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Oct 29 2019
CROSSREFS
Cf. A026765 (row sums).
Sequence in context: A229118 A320796 A026725 * A130523 A034363 A378809
KEYWORD
nonn,tabl
EXTENSIONS
Offset corrected by Sean A. Irvine, Oct 25 2019
More terms added by G. C. Greubel, Oct 29 2019
STATUS
approved