login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026755
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026747.
10
1, 1, 4, 5, 18, 25, 84, 124, 398, 612, 1901, 3012, 9126, 14800, 43968, 72658, 212417, 356544, 1028520, 1749344, 4989477, 8583258, 24244139, 42121079, 117973702, 206754379, 574811040, 1015179978, 2803969443, 4986329826
OFFSET
0,3
LINKS
MAPLE
A026747 := proc(n, k) option remember;
if k=0 or k = n then 1;
elif type(n, 'even') and k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc:
seq(add(A026747(n, k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k], Floor[n/2]], {n, 0, 30}] (* G. C. Greubel, Oct 29 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n, 2)==0 and k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019
KEYWORD
nonn
STATUS
approved