login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026765
a(n) = Sum_{k=0..n} T(n,k), T given by A026758.
11
1, 2, 4, 9, 18, 41, 82, 188, 376, 867, 1734, 4020, 8040, 18735, 37470, 87735, 175470, 412715, 825430, 1949624, 3899248, 9245721, 18491442, 44003717, 88007434, 210121733, 420243466, 1006390014, 2012780028, 4833517551
OFFSET
0,2
LINKS
FORMULA
Conjecture: G.f.: -(1-2*x-5*x^2+10*x^3 - sqrt(1-10*x^2+29*x^4-20*x^6) )/(2*x*(1-2*x-5*x^2+10*x^3)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
Conjecture: (n+1)*a(n) -2*a(n-1) +2*(-5*n+3)*a(n-2) +12*a(n-3) +(29*n-71)*a(n-4) -10*a(n-5) +20*(-n+5)*a(n-6)=0. - R. J. Mathar, Jun 30 2013
Conjecture: a(n) ~ (2+sqrt(5) + (-1)^n*(2-sqrt(5))) * 5^(n/2) / sqrt(2*Pi*n). - Vaclav Kotesovec, Feb 12 2014
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n, 'odd') and k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq(add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Oct 31 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n, 2)==1 and k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 31 2019
KEYWORD
nonn
STATUS
approved