login
A026767
a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026758.
10
1, 3, 7, 16, 34, 75, 157, 345, 721, 1588, 3322, 7342, 15382, 34117, 71587, 159322, 334792, 747507, 1572937, 3522561, 7421809, 16667530, 35158972, 79162689, 167170123, 377291856, 797535322, 1803925336, 3816705364
OFFSET
0,2
COMMENTS
Partial sums of A026765.
LINKS
FORMULA
Conjecture: (n+1)*a(n) +(-n-3)*a(n-1) +2*(-5*n+4)*a(n-2) +2*(5*n+3)*a(n-3) +(29*n-83)*a(n-4) +(-29*n+61)*a(n-5) +10*(-2*n+11)*a(n-6) +20*(n-5)*a(n-7)=0. - R. J. Mathar, Jun 30 2013
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k = n then 1;
elif type(n, 'odd') and k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq( add(add(T(j, k), k=0..n), j=0..n), n=0..30); # G. C. Greubel, Oct 31 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[j, k], {k, 0, n}, {j, 0, n}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n, 2)==1 and k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(sum(T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 31 2019
KEYWORD
nonn
STATUS
approved