login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238089 Number of compositions of n such that the minimum part is equal to 1 and the first 1 occurs before any maximum part in the composition. 1
0, 0, 0, 1, 3, 7, 16, 34, 73, 152, 318, 657, 1356, 2784, 5703, 11647, 23740, 48290, 98073, 198887, 402837, 815032, 1647424, 3327112, 6714352, 13540995, 27292175, 54978561, 110697947, 222790629, 448211668, 901392243, 1812185325, 3642182184, 7318157714 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

We note that the definition implies that the maximum part of the composition must be strictly greater than 1.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..800

FORMULA

a(n) = Sum_{i>=2} x^(i+1)/(1-Sum_{j=2..i-1} x^j)/(1 - Sum{k=1..i-1} x^k)/(1 - Sum_{m=1..i} x^m).

a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014

EXAMPLE

a(5) = 7 because we have: 1+4, 1+1+3, 1+2+2, 1+3+1, 1+1+1+2, 1+1+2+1, 1+2+1+1.

MAPLE

b:= proc(n, t, m) option remember;

      `if`(n=0, t, add(`if`(j=1 and m>1, b(n-1, 1, m),

      `if`(j>=m, b(n-j, 0, j), b(n-j, t, m))), j=1..n))

    end:

a:= n-> b(n, 0$2):

seq(a(n), n=0..45);  # Alois P. Heinz, Feb 17 2014

MATHEMATICA

nn=30; CoefficientList[Series[Sum[x^(i+1)/(1-Sum[x^j, {j, 2, i-1}])/(1-Sum[x^k, {k, 1, i-1}])/(1-Sum[x^m, {m, 1, i}]), {i, 2, nn}], {x, 0, nn}], x]

(* or *)

Table[Length[Select[Level[Table[Select[Compositions[n, k], Count[#, 0]==0&], {k, 1, n}], {2}], Min[Position[#, 1]]<Min[Position[#, Max[#]]]&]], {n, 0, 10}]

CROSSREFS

Sequence in context: A054455 A178455 A281811 * A335713 A026734 A026767

Adjacent sequences:  A238086 A238087 A238088 * A238090 A238091 A238092

KEYWORD

nonn

AUTHOR

Geoffrey Critzer, Feb 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 13:05 EST 2021. Contains 349563 sequences. (Running on oeis4.)