login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026726
a(n) = T(2n,n), T given by A026725.
11
1, 2, 7, 27, 108, 440, 1812, 7514, 31307, 130883, 548547, 2303413, 9686617, 40783083, 171868037, 724837891, 3058850316, 12915186640, 54554594416, 230526280814, 974414815782, 4119854160332, 17422801069670, 73695109608352, 311768697325788, 1319136935150530
OFFSET
0,2
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
FORMULA
From Philippe Deléham, Feb 11 2009: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A000045(k+1).
a(n) = Sum_{k=0..n} A106566(n,k)*A122367(k). (End)
From Philippe Deléham, Feb 02 2014: (Start)
a(n) = Sum_{k=0..n} A236843(n+k,2*k).
a(n) = Sum_{k=0..n} A236830(n,k).
a(n) = A236830(n+1,1).
a(n) = A165407(3*n).
G.f.: C(x)/(1-x*C(x)^3), C(x) the g.f. of A000108. (End)
n*(5*n-11)*a(n) +2*(-20*n^2+59*n-30)*a(n-1) +15*(5*n^2-19*n+16)*a(n-2) +2*(5*n-6)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Oct 26 2019
n*a(n) +(-7*n+4)*a(n-1) +(7*n-2)*a(n-2) +(19*n-60)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Oct 26 2019
MAPLE
A026726 := proc(n)
A026725(2*n, n) ;
end proc:
seq(A026726(n), n=0..10) ; # R. J. Mathar, Oct 26 2019
MATHEMATICA
CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x, 0, 30}], x] (* G. C. Greubel, Jul 16 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ G. C. Greubel, Jul 16 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // G. C. Greubel, Jul 16 2019
(Sage) (4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
(GAP) List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n, n-k)*
Fibonacci(k+1)/(n+k+1) )); # G. C. Greubel, Jul 16 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved