Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 15 2022 20:53:36
%S 1,2,7,27,108,440,1812,7514,31307,130883,548547,2303413,9686617,
%T 40783083,171868037,724837891,3058850316,12915186640,54554594416,
%U 230526280814,974414815782,4119854160332,17422801069670,73695109608352,311768697325788,1319136935150530
%N a(n) = T(2n,n), T given by A026725.
%H G. C. Greubel, <a href="/A026726/b026726.txt">Table of n, a(n) for n = 0..1000</a>
%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
%F From _Philippe Deléham_, Feb 11 2009: (Start)
%F a(n) = Sum_{k=0..n} A039599(n,k)*A000045(k+1).
%F a(n) = Sum_{k=0..n} A106566(n,k)*A122367(k). (End)
%F From _Philippe Deléham_, Feb 02 2014: (Start)
%F a(n) = Sum_{k=0..n} A236843(n+k,2*k).
%F a(n) = Sum_{k=0..n} A236830(n,k).
%F a(n) = A236830(n+1,1).
%F a(n) = A165407(3*n).
%F G.f.: C(x)/(1-x*C(x)^3), C(x) the g.f. of A000108. (End)
%F n*(5*n-11)*a(n) +2*(-20*n^2+59*n-30)*a(n-1) +15*(5*n^2-19*n+16)*a(n-2) +2*(5*n-6)*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, Oct 26 2019
%F n*a(n) +(-7*n+4)*a(n-1) +(7*n-2)*a(n-2) +(19*n-60)*a(n-3) +2*(2*n-7)*a(n-4)=0. - _R. J. Mathar_, Oct 26 2019
%p A026726 := proc(n)
%p A026725(2*n,n) ;
%p end proc:
%p seq(A026726(n),n=0..10) ; # _R. J. Mathar_, Oct 26 2019
%t CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x,0,30}], x] (* _G. C. Greubel_, Jul 16 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ _G. C. Greubel_, Jul 16 2019
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // _G. C. Greubel_, Jul 16 2019
%o (Sage) (4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jul 16 2019
%o (GAP) List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n,n-k)*
%o Fibonacci(k+1)/(n+k+1) )); # _G. C. Greubel_, Jul 16 2019
%Y Cf. A000045, A000108, A026725.
%K nonn
%O 0,2
%A _Clark Kimberling_