login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236830
Riordan array (1/(1-x*C(x)^3), x*C(x)), C(x) the g.f. of A000108.
12
1, 1, 1, 4, 2, 1, 16, 7, 3, 1, 65, 27, 11, 4, 1, 267, 108, 43, 16, 5, 1, 1105, 440, 173, 65, 22, 6, 1, 4597, 1812, 707, 267, 94, 29, 7, 1, 19196, 7514, 2917, 1105, 398, 131, 37, 8, 1, 80380, 31307, 12111, 4597, 1680, 575, 177, 46, 9, 1, 337284, 130883, 50503, 19196, 7085, 2488, 808, 233, 56, 10, 1
OFFSET
0,4
COMMENTS
T(n+3,n) = A011826(n+5).
FORMULA
Sum_{k=0..n} T(n,k) = A026726(n).
G.f.: 1/((x^2*C(x)^4-x*C(x))*y-x*C(x)^3+1), where C(x) the g.f. of A000108. - Vladimir Kruchinin, Apr 22 2015
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..n-k} Fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i).
The n-th row polynomial of row reverse triangle is the n-th degree Taylor polynomial of the rational function (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^4 = 1 + 4*x + 11*x^2 + 27*x^3 + 65*x^4 + O(x^5), giving row 4 as (65, 27, 11, 4, 1). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
4, 2, 1;
16, 7, 3, 1;
65, 27, 11, 4, 1;
267, 108, 43, 16, 5, 1;
1105, 440, 173, 65, 22, 6, 1;
4597, 1812, 707, 267, 94, 29, 7, 1;
19196, 7514, 2917, 1105, 398, 131, 37, 8, 1;
Production matrix is:
1 1
3 1 1
6 1 1 1
10 1 1 1 1
15 1 1 1 1 1
21 1 1 1 1 1 1
28 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1
45 1 1 1 1 1 1 1 1 1
55 1 1 1 1 1 1 1 1 1 1
66 1 1 1 1 1 1 1 1 1 1 1
78 1 1 1 1 1 1 1 1 1 1 1 1
91 1 1 1 1 1 1 1 1 1 1 1 1 1
...
MAPLE
A236830 := (n, k) -> add(combinat:-fibonacci(2*i-1)*binomial(2*n-2-k-i, n-k-i), i = 0..n-k): seq(seq(A236830(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
RiordanArray[1/(1 - # c[#]^3)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Table[Sum[Binomial[2*n-k-j-2, n-k-j]*Fibonacci[2*j-1], {j, 0, n-k}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 18 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, n-k, binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 18 2019
(Magma) [(&+[Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2019
(Sage) [[sum( binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1) for j in (0..n-k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 18 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1) )))); # G. C. Greubel, Jul 18 2019
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Feb 01 2014
STATUS
approved