OFFSET
0,4
COMMENTS
T(n+3,n) = A011826(n+5).
LINKS
G. C. Greubel, Rows n= 0..100 of triangle, flattened
FORMULA
Sum_{k=0..n} T(n,k) = A026726(n).
G.f.: 1/((x^2*C(x)^4-x*C(x))*y-x*C(x)^3+1), where C(x) the g.f. of A000108. - Vladimir Kruchinin, Apr 22 2015
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..n-k} Fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i).
The n-th row polynomial of row reverse triangle is the n-th degree Taylor polynomial of the rational function (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^4 = 1 + 4*x + 11*x^2 + 27*x^3 + 65*x^4 + O(x^5), giving row 4 as (65, 27, 11, 4, 1). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
4, 2, 1;
16, 7, 3, 1;
65, 27, 11, 4, 1;
267, 108, 43, 16, 5, 1;
1105, 440, 173, 65, 22, 6, 1;
4597, 1812, 707, 267, 94, 29, 7, 1;
19196, 7514, 2917, 1105, 398, 131, 37, 8, 1;
Production matrix is:
1 1
3 1 1
6 1 1 1
10 1 1 1 1
15 1 1 1 1 1
21 1 1 1 1 1 1
28 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1
45 1 1 1 1 1 1 1 1 1
55 1 1 1 1 1 1 1 1 1 1
66 1 1 1 1 1 1 1 1 1 1 1
78 1 1 1 1 1 1 1 1 1 1 1 1
91 1 1 1 1 1 1 1 1 1 1 1 1 1
...
MAPLE
A236830 := (n, k) -> add(combinat:-fibonacci(2*i-1)*binomial(2*n-2-k-i, n-k-i), i = 0..n-k): seq(seq(A236830(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
RiordanArray[1/(1 - # c[#]^3)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Table[Sum[Binomial[2*n-k-j-2, n-k-j]*Fibonacci[2*j-1], {j, 0, n-k}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 18 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, n-k, binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 18 2019
(Magma) [(&+[Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2019
(Sage) [[sum( binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1) for j in (0..n-k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 18 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1) )))); # G. C. Greubel, Jul 18 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Feb 01 2014
STATUS
approved