login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165201
Expansion of 1/(1-x*c(x)^3), c(x) the g.f. of A000108.
5
1, 1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191
OFFSET
0,3
COMMENTS
Hankel transform is A165202. Essentially the same as A026674.
LINKS
FORMULA
G.f.: (1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
a(n) = (1/2)*Sum_{k=0..n} C(2k,k)*F(3(n-k)+1)/(1-2k) + (1/2)*(F(3n-2) + 2*0^n).
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+15*n-10)*a(n-1) +(15*n^2-69*n+80)*a(n-2) +2*(n-2)*(2*n-5)*a(n-3) =0. - R. J. Mathar, Nov 15 2011
a(n) ~ 1/10*(3*sqrt(5)-5)*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[(1-3*x-2*x^2+(1-x)*Sqrt[1-4*x])/(2*(1-4*x-x^2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))) \\ G. C. Greubel, Jul 18 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-3*x-2*x^2 + (1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 18 2019
(Sage) ((1-3*x-2*x^2 + (1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
(GAP) List([0..30], n-> (1/2)*(2*0^n + Fibonacci(3*n-2) + Sum([0..n], j-> Binomial(2*j, j)*Fibonacci(3*(n-j)+1)/(1-2*j) ))); # G. C. Greubel, Jul 18 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2009
STATUS
approved