login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099781
a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * 4^(n-3*k).
7
1, 4, 16, 65, 268, 1120, 4737, 20244, 87280, 379073, 1656348, 7272896, 32060673, 141775396, 628505296, 2791696705, 12419264300, 55315472416, 246607247233, 1100229683508, 4911436984752, 21934428189121, 97992663440444
OFFSET
0,2
COMMENTS
In general a(n) = Sum_{k=0..floor(n/3)} C(n-k,2*k) * u^k * v^(n-3*k) has g.f. (1-v*x)/((1-v*x)^2 - u*x^2) and satisfies the recurrence a(n) = 2*u*v*a(n-1) - v^2*a(n-2) + u*a(n-3).
FORMULA
G.f.: (1-4*x)/((1-4*x)^2 - x^3).
a(n) = 8*a(n-1) - 16*a(n-2) + a(n-3).
MAPLE
seq(coeff(series((1-4*x)/((1-4*x)^2 -x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 04 2019
MATHEMATICA
LinearRecurrence[{8, -16, 1}, {1, 4, 16}, 30] (* Harvey P. Dale, Jul 07 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-4*x)/((1-4*x)^2 -x^3)) \\ G. C. Greubel, Sep 04 2019
(Magma) I:=[1, 4, 16]; [n le 3 select I[n] else 8*Self(n-1) - 16*Self(n-2) + Self(n-3): n in [1..30]];
(Sage)
def A099781_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-4*x)/((1-4*x)^2 -x^3)).list()
A099781_list(30) # G. C. Greubel, Sep 04 2019
(GAP) a:=[1, 4, 16];; for n in [4..30] do a[n]:=8*a[n-1]-16*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Sep 04 2019
CROSSREFS
Sequence in context: A132820 A165201 A026674 * A026872 A081915 A307878
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 26 2004
STATUS
approved