login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081915
a(n) = 4^n*(n^3 - 3n^2 + 2n + 384)/384.
4
1, 4, 16, 65, 272, 1184, 5376, 25344, 122880, 606208, 3014656, 15007744, 74448896, 367001600, 1795162112, 8707375104, 41875931136, 199715979264, 944892805120, 4436701216768, 20684562497536, 95794950569984, 440904162738176
OFFSET
0,2
COMMENTS
Binomial transform of A081914. 4th binomial transform of (1,0,0,1,0,0,0,0,...). Case k=4 where a(n,k) = k^n*(n^3 - 3n^2 + 2n + 6k^3)/(6k^3), with g.f.: (1 - 3kx + 3k^2x^2 - (k^3-1)x^3)/(1-kx)^4.
FORMULA
a(n) = 4^n*(n^3 - 3n^2 + 2n + 384)/384.
G.f.: (1 - 12x + 48x^2 - 63x^3)/(1-4x)^4.
MATHEMATICA
LinearRecurrence[{16, -96, 256, -256}, {1, 4, 16, 65}, 30] (* Harvey P. Dale, Aug 14 2017 *)
CoefficientList[Series[(1 - 12x + 48x^2 - 63x^3)/(1-4x)^4 , {x, 0, 30}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(Magma) [4^n*(n^3-3*n^2+2*n+384)/384: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
(PARI) a(n)=4^n*(n^3-3*n^2+2*n+384)/384 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A081916.
Sequence in context: A026674 A099781 A026872 * A307878 A217632 A026762
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 31 2003
STATUS
approved